Abstract:
Disclosed are a thin film solar cell and a method of manufacturing the thin film solar cell. The thin film solar cell according to an exemplary embodiment of the present invention thin film solar cell includes a substrate: a front electrode layer formed on the substrate; an oxide layer formed on the front electrode layer: a light absorbing layer (intrinsic layer) formed on the oxide layer; and a back electrode layer formed on the light absorbing layer, wherein the oxide layer is formed of a material selected from MoO2, WO2, V2O5, NiO and CrO3.
Abstract:
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Abstract:
A first signal input circuit outputs a first control signal in response to self-refresh and active signals. A second signal input circuit outputs a second control signal in response to the self-refresh and active signals. The power supply circuit applies a first supply voltage to an output terminal in response to the first control signal. An elevated voltage generator generates a elevated voltage by pumping a second supply voltage, and applies the elevated voltage to the output terminal, in response to the first and second control signals.
Abstract:
A light-emitting display device the same includes an insulating substrate having a thin film transistor formed thereon. The thin film transistor includes a source electrode and/or a drain electrode. A passivation layer is formed on the insulating substrate over at least a portion of the thin film transistor, and has a via hole formed therein, which electrically contacts either the source electrode or the drain electrode. A pixel electrode is formed in the via hole. A light-blocking layer is formed over an entire upper surface of the passivation layer except for an area corresponding to the pixel electrode. A planarization layer is formed on an upper surface of the light-blocking layer except for an area corresponding to the pixel electrode.
Abstract:
Disclosed herein is a bag with an anti-theft function which is used to temporarily store various valuables (a wallet, a cellular phone, a camera, a watch, etc.) or clothes in a crowded place, for example, a water play area such as a beach or a water park, and is configured such that the stored valuables or the bag itself can be prevented from being stolen. The bag according to the present invention includes an anti-theft means which fastens first and second zippers that openably close an opening of the bag body to each other and binds the bag body to a surrounding structure, whereby valuables (a wallet, a cellular phone, a camera, a watch, etc.) stored in the bag body not only can be prevented from being stolen but the bag itself can also be prevented from being stolen because it is bound to the surrounding structure.
Abstract:
A semiconductor memory device includes: a plurality of cell array blocks; a boosted voltage driving unit for selectively supplying a boosted voltage to the cell array blocks; and a controller controlling a driving operation of the boosted voltage driving unit in response to a cell array block select signal.
Abstract:
A flat panel display device with improved electrical characteristics and a simplified manufacturing process is disclosed. The device includes a semiconductor layer formed on an insulating substrate; source and drain electrodes directly contacting both end portions of the semiconductor layer, respectively; a pixel electrode having an opening portion formed thereon; a first insulating layer formed over the remaining portion of the insulating substrate except for the opening portion; a gate electrode formed on a portion of the first insulating layer over the semiconductor layer; and source and drain regions formed in both end portions of the semiconductor layer.
Abstract:
An organic electroluminescent display in which a black matrix with a concentration gradient of a transparent material and a metallic material is formed on the same surface as a pixel electrode. The black matrix and a pixel electrode of the organic electroluminescent display are formed using only one masking operation. The black matrix has a concentration gradient of a continuous gradient structure in which constituents of the transparent material are continuously decreased while constituents of the metallic material are continuously increased as a thickness of the black matrix is increased, a step gradient structure in which the constituents of the transparent material are gradually decreased while the constituents of the metallic material are gradually increased as the thickness of the black matrix is increased, or a multi-gradient structure in which the continuous gradient structure and/or the step gradient structure are repeated.
Abstract:
Provided are an integrated thin-film solar cell and a method of manufacturing the same. The method comprises forming and patterning a conductive material to be adjacently spaced a predetermined distance apart from each other on a substrate; forming a solar cell (semiconductor) layer on the resultant substrate; obliquely depositing a first transparent conductive material on the solar cell layer; etching the solar cell layer using the first transparent conductive material as a mask; and obliquely depositing a second transparent conductive material on the resultant substrate, and electrically connecting the conductive material with the first transparent conductive material.
Abstract:
A backlight unit includes a substrate and has a plurality of light emitting areas. In each light emitting area, at least one light emitting diode and a bypass current path are connected in parallel between a connection node and a switching unit. The switching unit is configured to connect a selected one of the light emitting diode and the bypass unit to the connection node of the next light emitting area.