Abstract:
A method for protecting a semiconductor device is disclosed that can improve reliability of a performance test for the semiconductor device and prevent damage to the semiconductor device during transportation or packaging for shipment. An IC cover is attached to the semiconductor device, which has height unevenness because it includes semiconductor chips and electric parts having different heights. The IC cover includes projecting portions and a base portion. After being attached to the semiconductor device, the projecting portions stand in a free area in the semiconductor device, and the base portion is supported by the projections to be separated from the semiconductor chips and electric parts in the semiconductor device. The IC cover is detachably attached to the semiconductor device.
Abstract:
A contactor for electronic parts can provide an appropriate and uniform contact with respect to a plurality of electrode terminals in an electronic part such as an IC. Each of a plurality of contact members has a first contact portion on one end thereof and a second contact portion on the other end thereof, the first contract portion having a recessed portion that receives one of the electrode terminals of the electronic part. A base accommodates and supports the plurality of the contact members. The first contact portion is movable in a horizontal direction.
Abstract:
A semiconductor device packaging structure is disclosed that can improve reliability of a performance test for the semiconductor device and prevent damage to the semiconductor device during transportation or packaging for shipment. An IC cover is attached to the semiconductor device, which has height unevenness because it includes semiconductor chips and electric parts having different heights. The IC cover includes projecting portions and a base portion. After being attached to the semiconductor device, the projecting portions stand in a free area in the semiconductor device, and the base portion is supported by the projections to be separated from the semiconductor chips and electric parts in the semiconductor device. The IC cover is detachably attached to the semiconductor device.
Abstract:
A component for a testing device for an electronic component includes a testing board; a projection electrode provided on a main surface of the testing board; a positioning part provided on the main surface of the testing board, the positioning part being configured to position the electronic component; and a pressing part configured to press the electronic component being positioned by the positioning part and make a lead part of the electronic component come in contact with the projection electrode so that the lead part is elastically deformed and made come in contact with the projection electrode.
Abstract:
A method for protecting a semiconductor device is disclosed that can improve reliability of a performance test for the semiconductor device and prevent damage to the semiconductor device during transportation or packaging for shipment. An IC cover is attached to the semiconductor device, which has height unevenness because it includes semiconductor chips and electric parts having different heights. The IC cover includes projecting portions and a base portion. After being attached to the semiconductor device, the projecting portions stand in a free area in the semiconductor device, and the base portion is supported by the projections to be separated from the semiconductor chips and electric parts in the semiconductor device. The IC cover is detachably attached to the semiconductor device.
Abstract:
A contactor has a contactor substrate and a plurality of contact electrodes formed on the contactor substrate. Each contact electrode is formed by a metal wire bent between one end joined to the contactor substrate and the other end. An inclined plane is formed by a cutting surface. A fracture surface formed by a tension fracture is formed at the apex portion of the contact electrode.
Abstract:
A component for a testing device for an electronic component includes a testing board; a projection electrode provided on a main surface of the testing board; a positioning part provided on the main surface of the testing board, the positioning part being configured to position the electronic component; and a pressing part configured to press the electronic component being positioned by the positioning part and make a lead part of the electronic component come in contact with the projection electrode so that the lead part is elastically deformed and made come in contact with the projection electrode.
Abstract:
A method for protecting a semiconductor device is disclosed that can improve reliability of a performance test for the semiconductor device and prevent damage to the semiconductor device during transportation or packaging for shipment. An IC cover is attached to the semiconductor device, which has height unevenness because it includes semiconductor chips and electric parts having different heights. The IC cover includes projecting portions and a base portion. After being attached to the semiconductor device, the projecting portions stand in a free area in the semiconductor device, and the base portion is supported by the projections to be separated from the semiconductor chips and electric parts in the semiconductor device. The IC cover is detachably attached to the semiconductor device.
Abstract:
A contact terminal formed of an electrically conductive material is arranged in each of a plurality of holed of a contactor substrate. An electrically conductive part is formed on an inner surface of each hole. The contact terminal has a first contact part that contacts a terminal of an electronic part and a second contact part that contacts the electrically conductive part in a middle portion. When the contact terminal bends by the first contact part being pressed, the second contact part contacts the electrically conductive part of the contactor substrate and an appropriate degree of contact pressure is obtained.
Abstract:
In a temperature control method, a controlled part is arranged to contact a first principal surface of a heat conduction part. The heat conduction part has the first principal surface and a second principal surface opposite to the first principal surface. The first principal surface has a configuration corresponding to a configuration of the controlled part. The second principal surface has an area larger than an area of the first principal surface. At least one of a heating unit and a cooling unit is driven to set the controlled part at a predetermined temperature. The heating unit and the cooling unit are disposed on the second principal surface of the heat conduction part so that the heating unit and the cooling unit are arranged side by side.