Abstract:
A packaged semiconductor device is made by forming a conductive pad on an external surface of an integrated circuit device, forming a passivation layer over the conductive pad, removing a portion of the passivation layer over a bond area on the conductive pad, forming a sacrificial anode around a majority of a periphery surrounding the bond area, forming a conductive bond in the bond area, and forming an encapsulating material around the conductive bond and an exposed portion of the sacrificial anode.
Abstract:
A microelectronic device package including a package substrate, microelectronic component disposed on a first surface of a first portion of the substrate, and encapsulant material surrounding the microelectronic electronic component. An exposed surface of the first portion of the substrate is exposed through an opening in a first major surface of the encapsulant material. The exposed surface of the first portion has an edge. Encapsulant material is adjacent to the edge at the first major surface. The exposed surface is opposite the first surface. A stress relief feature located in one of the first major surface or a second major surface of the encapsulant material. The second major surface is opposite the first major surface. The stress relief feature reduces an amount of the encapsulant material and is 1 mm or less of a plane of the edge of the exposed surface. The plane is generally perpendicular to the exposed surface.
Abstract:
A packaged semiconductor device is made by forming a conductive pad on an external surface of an integrated circuit device, forming a passivation layer over the conductive pad, removing a portion of the passivation layer over a bond area on the conductive pad, forming a sacrificial anode around a majority of a periphery surrounding the bond area, forming a conductive bond in the bond area, and forming an encapsulating material around the conductive bond and an exposed portion of the sacrificial anode.
Abstract:
The present disclosure is generally directed to compounds that can inhibit DAGLα and/or β activity, compositions comprising such compounds, and methods for inhibiting DAGLα and/or β activity.
Abstract:
Systems and methods for discovering a set of applications that run on a network are disclosed. In accordance with one method, aggregate traffic volumes are determined for pairs of nodes on the network over a plurality of time intervals. The method further includes building a traffic matrix denoting each of the pairs of nodes and denoting respective aggregate traffic volume histories of each of the pairs of nodes that are based on the determined traffic volumes. In addition, the traffic matrix is formulated as a combination of bases vectors that model the set of applications. The bases vectors are determined by applying a covariance matrix adaptation evolutionary strategy based on the traffic matrix. An indication of the set of applications based on the bases vectors is output.
Abstract:
The invention encompasses compounds of formula I as well as compositions and methods of using the compounds. The compounds have activity against hepatitis C virus (HCV) and are useful in treating those infected with HCV.
Abstract:
The present disclosure is generally directed to compounds that can inhibit DAGLα and/or β activity, compositions comprising such compounds, and methods for inhibiting DAGLα and/or β activity.
Abstract:
The invention is directed to a method for forming a flexible electro-optic film. The method comprises steps of providing a first substrate having a conductive layer formed thereon and then forming a first locating structure over the conductive layer, wherein the locating structure includes target regions and periphery regions. The surface tension of the target regions is difference from that of the periphery regions. Thereafter, an electro-optic medium placing process for forming an electro-optic droplet on each of the target regions is performed. A solidifying process for forming a capsule wall covering the electro-optic droplet on each of the target regions is performed. The first substrate is laminated with a second substrate.
Abstract:
The present disclosure relates to tripeptide compounds, compositions and methods for the treatment of hepatitis C virus (HCV) infection. Also disclosed are pharmaceutical compositions containing such compounds and methods for using these compounds in the treatment of HCV infection.
Abstract:
The invention encompasses compounds of Formula I, pharmaceutically acceptable salts thereof, compositions, and methods of using the compounds. The compounds have activity against hepatitis C virus (HCV) and are useful in treating those infected with HCV.