摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
A curb climbing wheelchair system having left and right side attachments are designed to be attached to left and right side portions, respectively, of a standard wheelchair to enable a wheelchair occupant to climb a curb, bump or other obstruction without the aid of another individual. Each attachment includes a ramp extending from a telescoping arm that is designed to be attached, via a clamping system, to one side of the wheelchair. When not in use, the ramps are folded and stowed away on the sides of the wheelchair. During use, the ends of the ramps are placed on the curb to allow the wheelchair occupant to roll up the curb. To retrieve the ramps (now disposed behind the wheelchair), the wheelchair occupant moves the telescoping arms, if necessary with the aid of an attached circular handle, to lift the ramps thus allowing the wheelchair occupant to grab the ramps. The retrieved ramps then are stowed away until needed.
摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
In a trench-gated MOSFET including an epitaxial layer over a substrate of like conductivity and trenches containing thick bottom oxide, sidewall gate oxide, and conductive gates, body regions of the complementary conductivity are shallower than the gates, and clamp regions are deeper and more heavily doped than the body regions but shallower than the trenches. Zener junctions clamp a drain-source voltage lower than the FPI breakdown of body junctions near the trenches, but the zener junctions, being shallower than the trenches, avoid undue degradation of the maximum drain-source voltage. The epitaxial layer may have a dopant concentration that increases step-wise or continuously with depth. Chained implants of the body and clamp regions permits accurate control of dopant concentrations and of junction depth and position. Alternative fabrication processes permit implantation of the body and clamp regions before gate bus formation or through the gate bus after gate bus formation.
摘要:
An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall and which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
摘要:
Power MOSFETs and fabrication processes for power MOSFETs use a continuous conductive gate structure within trenches to avoid problems arising from device topology caused when a gate bus extends above a substrate surface. The gate bus trench and/or gate structures in the device trenches can contain a metal/silicide to reduce resistance, where polysilicon layers surround the metal/silicide to prevent metal atoms from penetrating the gate oxide in the device trenches. CMP process can remove excess polysilicon and metal and planarize the conductive gate structure and/or overlying insulating layers. The processes are compatible with processes forming self-aligned or conventional contacts in the active device region.
摘要:
A semiconductor die has a bonding pad for a MOSFET such as a power MOSFET and a separate bonding pad for ESD protection circuitry. Connecting the bonding pads together makes the ESD protection circuitry functional to protect the MOSFET. Before connecting the bonding pads together, the ESD protection circuitry and/or the MOSFET can be separately tested. A voltage higher than functioning ESD protection circuitry would permit can be used when testing the MOSFET. A packaging process such as wire bonding or attaching the die to a substrate in a flip-chip package can connect the bonding pads after testing.