Abstract:
An example memory cell may have at least a tunneling region disposed between a conducting region and a metal region, wherein the tunneling region can have at least an active interface region disposed between a first tunneling barrier and a second tunneling barrier. A high resistive film is formed in the active interface region with migration of ions from both the metal and conducting regions responsive to a write current to program the memory cell to a selected resistive state.
Abstract:
A data storage device and associated method for providing current magnitude compensation for memory cells in a data storage array. In accordance with some embodiments, unit cells are connected between spaced apart first and second control lines of common length. An equalization circuit is configured to respectively apply a common current magnitude through each of the unit cells by adjusting a voltage applied to the cells in relation to a location of each of the cells along the first and second control lines.
Abstract:
A data storage device and associated method for providing current magnitude compensation for memory cells in a data storage array. In accordance with some embodiments, unit cells are connected between spaced apart first and second control lines of common length. An equalization circuit is configured to respectively apply a common current magnitude through each of the unit cells by adjusting a voltage applied to the cells in relation to a location of each of the cells along the first and second control lines.
Abstract:
An apparatus comprises mechanically scanned ferroelectric data storage media. A scanning electrode contacts the scannable surface with a contact force. The ferroelectric data storage media generates a piezoelectric potential that is picked up by the electrode. The piezoelectric potential has a polarity that varies as a function of data polarity on the data storage media.
Abstract:
An apparatus includes a first ferroelectric storage layer and a second ferroelectric storage layer adjacent the first ferroelectric storage layer. A coupling layer may be between the first ferroelectric storage layer and the second ferroelectric storage layer. The ferroelectric storage layers may be configured as a data storage medium for use in a data storage system. A related method is also disclosed.
Abstract:
A non-volatile memory cell and method of use therefore are disclosed. In accordance with various embodiments, the memory cell comprises a tunneling region disposed between a conducting region and a metal region, wherein the tunneling region comprises an active interface region disposed between a first tunneling barrier and a second tunneling barrier. A high resistive film is formed in the active interface region with migration of ions from both the metal and conducting regions responsive to a write current to program the memory cell to a selected resistive state.
Abstract:
An apparatus includes a first ferroelectric storage layer and a second ferroelectric storage layer adjacent the first ferroelectric storage layer. A coupling layer may be between the first ferroelectric storage layer and the second ferroelectric storage layer. The ferroelectric storage layers may be configured as a data storage medium for use in a data storage system. A related method is also disclosed.
Abstract:
An apparatus comprises mechanically scanned ferroelectric data storage media. A scanning electrode contacts the scannable surface with a contact force. The ferroelectric data storage media generates a piezoelectric potential that is picked up by the electrode. The piezoelectric potential has a polarity that varies as a function of data polarity on the data storage media.