Abstract:
A package structure includes a plurality of die carriers identical to each other. The respective features in each of the plurality of die carriers vertically overlap corresponding features in other ones of the plurality of die carriers. Each of the plurality of die carriers includes a plurality of through-substrate vias (TSVs) including a plurality of data buses. The plurality of die carriers is stacked and electrically connected to each other through the plurality of TSVs. The package structure further includes a plurality of device dies. Each of the plurality of device dies is bonded to one of the plurality of die carriers. Each of the plurality of data buses is configured to dedicate to data transmission of one of the plurality of device dies.
Abstract:
A package structure includes a networking unit including a plurality of switches/routers and a plurality of network interface units coupled to the plurality of switches/routers, and an interposer including a plurality of metal connections. The interposer is substantially free from functional elements built therein. A functional element is outside of, and bonded onto, the interposer, wherein the functional element is electrically coupled to the networking unit through the plurality of metal connections.
Abstract:
An integrated circuit system having an interposer and an integrated circuit with first and second bond pads, the integrated circuit die bonded to the interposer using the first bond pads. The integrated circuit having circuit blocks, that operate at different operating voltages and voltage regulator modules die bonded to the second bond pads of the integrated circuit. The voltage regulator modules converting a power supply voltage to the operating voltage of a respective circuit block and supply the respective operating voltage to the circuit block via the second bond pads.
Abstract:
A method and apparatus for distributing clock signals throughout an integrated circuit is provided. An embodiment comprises a distribution die which contains either the clock signal distribution network by itself, or the clock signal distribution network in tandem with a clock signal generator. The distribution die is electrically connected through an interface technology, such as microbumps, to route the clock signals to the functional circuits on a separate functional die. Alternatively, the distribution die could be electrically connected to more than one die at a time, using vias through the distribution die to route the clock signals to the different die. This separate distribution die reduces the coupling between lines and also helps to prevent signal skew as the signal moves through the distribution network.
Abstract:
A method for forming a single die includes forming at least one first active device over a first substrate and at least one first metallic layer coupled to the first active device. At least one second metallic layer is formed over a second substrate, wherein the second substrate does not include any active device. The at least one first metallic layer is bonded with the at least one second metallic layer such that the first substrate and the second substrate constitute a single die.
Abstract:
A semiconductor structure includes a first semiconductor die and a second semiconductor die identical to the first semiconductor die. The first semiconductor die includes a first identification circuit; and a first plurality of input/output (I/O) pads on the surface of the first semiconductor die. The second semiconductor die includes a second identification circuit, wherein the first and the second identification circuits are programmed differently from each other; and a second plurality of I/O pads on the surface of the second semiconductor die. Each of the first plurality of I/O pads is vertically aligned to and connected to one of the respective second plurality of I/O pads. The second semiconductor die is vertically aligned to and bonded on the first semiconductor die.
Abstract:
A stacked structure includes a first die coupled to a first substrate and having a first conductive structure formed through the first die. A second die is mounted over the first die. The second die is coupled to the first substrate by the first conductive structure. At least one first support structure formed from a second substrate is provided over the first substrate, adjacent to at least one of the first die and the second die. A top surface of the first support structure is substantially coplanar with a top surface of at least one of the first and second dies adjacent to the first support structure. The stacked structure further includes a heat spreader mounted over the second die.
Abstract:
Structure and methods for a compensated bandgap reference circuit. A first integrated circuit die having a first bandgap reference circuit with a non-zero temperature coefficient; and having a first output reference signal is provided, a second integrated circuit die having a second bandgap reference circuit with a non-zero temperature coefficient that is of opposite polarity from the temperature coefficient of the first bandgap reference circuit, and having a second output reference signal is provided; an adder circuit disposed on at least one of the first and second integrated circuit dies combines the first and second output reference signals, and outputs a combined reference signal; and connectors for connecting the first and second output signals to the adder circuit are provided. Methods are disclosed for pairing integrated circuit dies with bandgap reference circuits and coupling the dies to form temperature compensated signals.
Abstract:
A package structure includes a plurality of die carriers identical to each other. The respective features in each of the plurality of die carriers vertically overlap corresponding features in other ones of the plurality of die carriers. Each of the plurality of die carriers includes a plurality of through-substrate vias (TSVs) including a plurality of data buses. The plurality of die carriers is stacked and electrically connected to each other through the plurality of TSVs. The package structure further includes a plurality of device dies. Each of the plurality of device dies is bonded to one of the plurality of die carriers. Each of the plurality of data buses is configured to dedicate to data transmission of one of the plurality of device dies.
Abstract:
Structure and methods for a compensated bandgap reference circuit. A first integrated circuit die having a first bandgap reference circuit with a non-zero temperature coefficient; and having a first output reference signal is provided, a second integrated circuit die having a second bandgap reference circuit with a non-zero temperature coefficient that is of opposite polarity from the temperature coefficient of the first bandgap reference circuit, and having a second output reference signal is provided; an adder circuit disposed on at least one of the first and second integrated circuit dies combines the first and second output reference signals, and outputs a combined reference signal; and connectors for connecting the first and second output signals to the adder circuit are provided. Methods are disclosed for pairing integrated circuit dies with bandgap reference circuits and coupling the dies to form temperature compensated signals.