Abstract:
A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
Abstract:
One illustrative method disclosed herein includes forming a plurality of spaced-apart trenches in a semiconducting substrate to thereby define a fin structure for the device, forming a local isolation region within each of the trenches, forming a sacrificial gate structure on the fin structure, wherein the sacrificial gate structure comprises at least a sacrificial gate electrode, and forming a layer of insulating material above the fin structure and within the trench above the local isolation region. In this example, the method further includes performing at least one etching process to remove the sacrificial gate structure to thereby define a gate cavity, after removing the sacrificial gate structure, performing at least one etching process to form a recess in the local isolation region, and forming a replacement gate structure that is positioned in the recess in the local isolation region and in the gate cavity.
Abstract:
An integrated circuit structure comprises at least one pair of complementary transistors on a substrate. The pair of complementary transistors includes a first transistor and a second transistor. In addition, only one stress-producing layer is on the first transistor and the second transistor and applies tensile strain force on the first transistor and the second transistor. The first transistor has a first channel region, a gate insulator on the first channel region, and a deuterium region between the first channel region and the gate insulator. The second transistor has a germanium doped channel region, as well as the same gate insulator on the germanium doped channel region, and the same deuterium region between the germanium doped channel region and the gate insulator.
Abstract:
A process of forming an electronic device can include patterning a semiconductor layer to define an opening extending to an insulating layer, wherein the insulating layer lies between a substrate and the semiconductor layer. After patterning the semiconductor layer, the opening can have a bottom, and the semiconductor layer can have a sidewall and a surface. The surface can be spaced apart from the insulating layer, and the sidewall can extend from the surface towards the insulating layer. The process can also include depositing a nitride layer within the opening, wherein depositing is performed using a PECVD technique. The process can further include densifying the nitride layer. The process can still further include removing a part of the nitride layer, wherein a remaining portion of the nitride layer can lie within the opening and be spaced apart from the surface.
Abstract:
A process of forming an electronic device can include patterning a semiconductor layer to define an opening extending to an insulating layer, wherein the insulating layer lies between a substrate and the semiconductor layer. After patterning the semiconductor layer, the opening can have a bottom, and the semiconductor layer can have a sidewall and a surface. The surface can be spaced apart from the insulating layer, and the sidewall can extend from the surface towards the insulating layer. The process can also include depositing a nitride layer within the opening, wherein depositing is performed using a PECVD technique. The process can further include densifying the nitride layer. The process can still further include removing a part of the nitride layer, wherein a remaining portion of the nitride layer can lie within the opening and be spaced apart from the surface.
Abstract:
A method for making a semiconductor device is provided herein. In accordance with the method, a semiconductor structure is provided which comprises an active semiconductor layer (224) disposed on a buried dielectric layer (222). A trench (229) is created in the semiconductor structure which exposes a portion of the buried dielectric layer. An oxide layer (250) is formed over the surfaces of the trench, and at least one stressor structure (255) is formed over the oxide layer.
Abstract:
A method for making a semiconductor device is provided. The method comprises (a) providing a semiconductor stack comprising a semiconductor substrate (203), a first semiconductor layer (205), and a first dielectric layer (207) disposed between the substrate and the first semiconductor layer; (b) forming a first trench in the first dielectric layer which exposes a portion of the substrate; (c) forming a first doped region (209) in the exposed portion of the substrate; and (d) forming anode (211) and cathode (213) regions in the first implant region.
Abstract:
An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.
Abstract:
A semiconductor device structure is made on a semiconductor substrate having a semiconductor layer having isolation regions. A first gate structure is formed over a first region of the semiconductor layer, and a second gate structure is over a second region of the semiconductor layer. A first insulating layer is formed over the first and second regions. The first insulating layer can function as a mask during an etch of the semiconductor layer and can be removed selective to the isolation regions and the sidewall spacers. The first insulating layer is removed from over the first region to leave a remaining portion of the first insulating layer over the second region. The semiconductor layer is recessed in the first region adjacent to the first gate to form recesses. A semiconductor material is epitaxially grown in the recesses. The remaining portion of the first insulating layer is removed.
Abstract:
A method for making a semiconductor device is provided herein. In accordance with the method, a semiconductor stack is provided which includes a semiconductor substrate, a first semiconductor layer, and a first dielectric layer disposed between the substrate and the first semiconductor layer. A first trench is formed in the first dielectric layer which exposes a portion of the substrate, and a first implant region is formed in the first trench. Cathode and anode regions are formed in the first implant region.