Abstract:
In an exhaust gas purification apparatus for an engine includes a bubble generation device, the bubble generation device for mixing nano-sized to micro-sized bubbles into a liquid reducing agent or a precursor thereof injection-supplied from an injection nozzle is disposed in a reducing agent supply system running from a reducing agent tank to the injection nozzle. When the liquid reducing agent or the precursor thereof is injection-supplied from the injection nozzle, the liquid reducing agent or the precursor thereof is divided by bubbles, and the bubbles are radically inflated and burst by a pressure change and a temperature change at the time of injection-supplying, so that microparticulation of the liquid reducing agent or the precursor thereof is facilitated.
Abstract:
In order to suppress deposition of constituent of a reducing agent (dissolved matter) in an exhaust passage of an engine enhancing an elimination rate of NOx even when temperature of an exhaust emission from the engine is low, an exhaust emission purifying apparatus is provided with an electro-generative-heat carrier provided on an upstream side of an injection nozzle that supplies the reducing agent into the exhaust emission on upstream side of a reduction catalyst in an exhaust pipe, the exhaust emission being heated to a temperature equal to or higher than a melting point of the dissolved matter whereby deposition of the dissolved matter on an inner wall surface of the exhaust pipe is suppressed to effectively use the supplied reducing agent for catalytic reduction reaction, even when the exhaust emission temperature is lower than the melting point of the dissolved matter of the reducing agent.
Abstract:
A NOx reduction catalyst and an ammonia slip oxidation catalyst are disposed in an exhaust system in this order, and also, an electric fan is disposed on piping which communicates an upper space of a storage tank storing therein a reducing agent with the exhaust upstream of the NOx reduction catalyst. Then, when the temperature of the ammonia slip oxidation catalyst reaches or exceeds the temperature for activating a catalyst thereof, the electric fan is operated for a predetermined period of time, so that the gas (ammonia series gas) in the upper space of the storage tank is forcibly discharged to the upstream side of the NOx reduction catalyst. Further, a discharge-forcing device, such as an electric fan or the like, forcibly discharging the gas in the upper space of the storage tank, an adsorbing device temporarily adsorbing thereto the forcibly discharged gas and an oxidation catalyst oxidizing the gas desorbed from the adsorbing device, may be disposed to the storage tank in this order.
Abstract:
An engine exhaust emission purification apparatus for reducing and purifying NOx in the exhaust emission by using a liquid reducing agent having a temperature maintenance device for maintaining a temperature of at least a part of a liquid reducing agent supply system configured by an injection nozzle and piping of the injection nozzle at a temperature lower than a boiling point of a solvent of the liquid reducing agent or equal to or higher than a melting point of dissolved matter in which the liquid reducing agent existing in the liquid reducing agent supply system conducts heat exchange with the liquid reducing agent supply system thereby being maintained at a temperature lower than the boiling point of the solvent or equal to or higher than the melting point of the dissolved matter and resultantly, occurrence of precipitation of the dissolved matter due to evaporation of only the solvent in the liquid reducing agent supply system does not occur, and even If precipitation of the dissolved matter occurs, the dissolved matter per se is melt away to prevent an injection hole of the injection nozzle from being clogged.
Abstract:
When an abnormality occurred in a SCR device is detected, the output of an engine is restricted. To this end, in one embodiment, at the time of an abnormality occurrence, a map adopted for calculating a fuel injection quantity is switched from that for a normal time (S407). Further, as the abnormality to be detected, the clogging of an injection nozzle, the dilution of urea water stored in a tank, or the like is adopted.
Abstract:
In an exhaust emission purifying apparatus for an internal combustion engine, for adding a reducing agent for NOx to the exhaust gas to thereby purify NOx in the exhaust gas, the mixing of the reducing agent injected by an injection nozzle with the exhaust gas is accelerated. To this end, in the apparatus of the present invention, the injection nozzle for the urea water is disposed to be opposite to the flow of the exhaust gas, or to face upward in a vertical direction.
Abstract:
In relation to an exhaust gas purification system that mixes a liquid reducing agent with air and injection-supplies this mixture into an exhaust gas flowing on an upstream side of a reduction catalyst (20) to thereby effect reduction purification of NOx in exhaust gas, a technical attention is directed to the relation of respective elements of; the travel distance, the fuel consumption, the air consumption, or the running time and the like, and the liquid reducing agent consumption, to constitute a configuration such that a continual monitor as to whether the injection condition of liquid reducing agent is normal or abnormal is executed by judging whether or not the amount of liquid reducing agent consumed for a predetermined travel distance, a predetermined fuel consumption, a predetermined air consumption, or a predetermined running time, is within a predetermined range.
Abstract:
A DPF disposed in an exhaust passage of a diesel engine is coated with a selective reducing catalyst, for selectively reducing and purifying NOx by using a reducing agent, and a thin film, having fine pores of size for allowing passage of the NOx and preventing passage of PM, in this order. In regeneration treatment of a DPF, the thin film prevents direct transmission of combustion heat of the PM to the selective reducing catalyst and suppresses a temperature rise of the selective reducing catalyst to thereby suppress deterioration of an active component.
Abstract:
An exhaust emission purifying apparatus has a NOx reduction catalytic converter in an exhaust passage of an engine, for purifying nitrogen oxides in the exhaust gas by reduction with urea aqueous solution; an injection nozzle injecting the urea solution toward an exhaust upstream side of the converter in the exhaust passage; and fins disposed on an exhaust upstream side of an injection position of the urea solution in the injection nozzle, for generating a spiral swirling flow of the gas swirling about a center corresponding to the central axis of an exhaust pipe. The swirling flow generated in the exhaust gas prior to the injection-supply of the urea aqueous solution promotes mixing of the solution with the gas to thereby promote the hydrolysis of the urea solution. And the exhaust gas and ammonia generated from the urea solution are uniformly mixed together.
Abstract:
For preventing clogging in an injection nozzle for supplying a reducing agent to exhaust gas flow on an upstream side of a reducing catalyst and for improving the efficiency of NOx purification processing, the injection nozzle 14 has a tip end portion 18 provided with a ring shaped protruding ridge 19 disposed on an outer peripheral surface of an exhaust gas downstream side end portion of the tip end portion 18 that is arranged substantially in parallel with an exhaust gas flow direction A inside an exhaust pipe 13, the ring shaped protruding ridge 19 being provided with injection hole or holes 20 drilled outward from the central axis of the injection nozzle 14, so that the reducing agent is ejected on the exhaust gas upstream side of the reduction catalyst, from the injection holes 20. The injection holes 20 do not directly open on a wide outer peripheral surface of the injection nozzle 14, and then when injection stops, the reducing agent does not become attached to or does not remain around the injection holes 20, or the remaining amount thereof becomes small, so that clogging of the injection holes 20 of the injection nozzle 14 is prevented, and the efficiency of NOx purification processing is improved.