摘要:
An object of the present invention is to provide an option of non-reducing saccharide by providing a novel non-reducing saccharide composed of glucose as constituents and to provide a novel enzyme forming the non-reducing saccharide, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the non-reducing saccharide, and uses thereof. The present invention solves the above object by providing a novel cyclic saccharide having a structure of cyclo{>6)-α-D-glucopyranosyl-(1>4)-α-D-glucopyranosyl-(1>6)-α-D-glucopyranosyl-(1>4)-α-D-glucopyranosyl-(1>}, cyclic maltosylmaltose, novel cyclic maltosylmaltose-forming enzyme, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the cyclic maltosylmaltose or a saccharide composition comprising the same, and uses thereof.
摘要:
A stable crystalline powdery saccharide having a crystallinity of 40% or more, less hygroscopicity, satisfactory fluidity, and beneficial handleability, which is obtainable from an aqueous solution, containing trehalose and a different saccharide(s) crystallizable in the presence of trehalose, by crystallizing the trehalose along with the different saccharide(s).
摘要:
The object of the present invention is to provide a method and a process for producing 2-O-α-glucopyranosyl-L-ascorbic acid where 5-O-α-glucopyranosyl-L-ascorbic acid and 6-O-α-glucopyranosyl-L-ascorbic acid are not formed or formed in such a small amount that the formation of these can nor be detected. The present invention solves the above object by providing a process for producing 2-O-α-glucopyranosyl-L-ascorbic acid comprising the steps of allowing α-isomaltosyl glucosaccharide-forming enzyme together with or without cyclomaltodextrin glucanotransferase (EC 2.4.1.19) to act on a solution comprising L-ascorbic acid and, an α-glucosyl saccharide to form 2-O-α-glucopyranosyl-L-ascorbic acid and collecting the formed 2-O-α-glucopyranosyl-L-ascorbic acid.
摘要:
A stable crystalline powdery saccharide having a crystallinity of 40% or more, less hygroscopicity, satisfactory fluidity, and beneficial handleability, which is obtainable from an aqueous solution, containing trehalose and a different saccharide(s) crystallizable in the presence of trehalose, by crystallizing the trehalose along with the different saccharide(s).
摘要:
An object of the present invention is to provide an option of non-reducing saccharide by providing a novel non-reducing saccharide composed of glucose as constituents and to provide a novel enzyme forming the non-reducing saccharide, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the non-reducing saccharide, and uses thereof. The present invention solves the above object by providing a novel cyclic saccharide having a structure of cyclo{→6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→6}, cyclic maltosylmaltose, novel cyclic maltosylmaltose-forming enzyme, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the cyclic maltosylmaltose or a saccharide composition comprising the same, and uses thereof.
摘要:
The object of the present invention is to provide a method and a process for producing 2-O-α-glucopyranosyl-L-ascorbic acid where 5-O-α-glucopyranosyl-L-ascorbic acid and 6-O-α-glucopyranosyl-L-ascorbic acid are not formed or formed in such a small amount that the formation of these can nor be detected. The present invention solves the above object by providing a process for producing 2-O-α-glucopyranosyl-L-ascorbic acid comprising the steps of allowing α-isomaltosyl glucosaccharide-forming enzyme together with or without cyclomaltodextrin glucanotransferase (EC 2.4.1.19) to act on a solution comprising L-ascorbic acid and, an α-glucosyl saccharide to form 2-O-α-glucopyranosyl-L-ascorbic acid and collecting the formed 2-O-α-glucopyranosyl-L-ascorbic acid.
摘要:
An object of the present invention is to provide an option of non-reducing saccharide by providing a novel non-reducing saccharide composed of glucose as constituents and to provide a novel enzyme forming the non-reducing saccharide, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the non-reducing saccharide, and uses thereof. The present invention solves the above object by providing a novel cyclic saccharide having a structure of cyclo{>6)-α-D-glucopyranosyl-(1>4)-α-D-glucopyranosyl-(1>6)-α-D-glucopyranosyl-(1>4)-α-D-glucopyranosyl-(1>}, cyclic maltosylmaltose, novel cyclic maltosylmaltose-forming enzyme, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the cyclic maltosylmaltose or a saccharide composition comprising the same, and uses thereof.
摘要:
An object of the present invention is to provide an option of non-reducing saccharide by providing a novel non-reducing saccharide composed of glucose as constituents and to provide a novel enzyme forming the non-reducing saccharide, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the non-reducing saccharide, and uses thereof. The present invention solves the above object by providing a novel cyclic saccharide having a structure of cyclo{→6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→6)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→6}, cyclic maltosylmaltose, novel cyclic maltosylmaltose-forming enzyme, a method and process for producing the same, a DNA encoding the enzyme, a recombinant DNA and transformant comprising the DNA, a composition comprising the cyclic maltosylmaltose or a saccharide composition comprising the same, and uses thereof.