摘要:
Device structures, design structures, and fabrication methods for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A device region is formed in a trench and is coupled with a handle wafer of a semiconductor-on-insulator substrate. The device region extends through a buried insulator layer of the semiconductor-on-insulator substrate toward a top surface of a device layer of the semiconductor-on-insulator substrate. The device region is comprised of lightly-doped semiconductor material. The device structure further includes a doped region formed in the device region and that defines a junction. A portion of the device region is laterally positioned between the doped region and the buried insulator layer of the semiconductor-on-insulator substrate. Another region of the device layer may be patterned to form fins for fin-type field-effect transistors.
摘要:
RC-trigger circuits for a semiconductor controlled rectifier (SCR), methods of providing electrostatic discharge (ESD) protection, and design structures for a RC-trigger circuit. The RC-trigger circuit is coupled to an input/output (I/O) signal pad by an isolation diode and is coupled to a power supply voltage by a power supply diode. Under normal operating conditions, the isolation diode is reverse biased, isolating the RC-trigger circuit from the input/output (I/O) pad, and the power supply diode is forward biased so that the RC-trigger circuit is supplied with power. The isolation diode may become forward biased during ESD events while the chip is unpowered, causing the RC-trigger circuit to trigger an SCR configured protect the signal pad from ESD into a conductive state. The power supply diode may become reverse biased during the ESD event, which isolates the power supply rail from the ESD voltage pulse.
摘要:
A robust ESD protection circuit, method and design structure for tolerant and failsafe designs are disclosed. A circuit includes a middle junction control circuit that turns off a top NFET of a stacked NFET electrostatic discharge (ESD) protection circuit during an ESD event.
摘要:
Device structures and design structures for a silicon controlled rectifier, as well as methods for fabricating a silicon controlled rectifier. The device structure includes first and second layers of different materials disposed on a top surface of a device region containing first and second p-n junctions of the silicon controlled rectifier. The first layer is laterally positioned on the top surface in vertical alignment with the first p-n junction. The second layer is laterally positioned on the top surface of the device region in vertical alignment with the second p-n junction. The material comprising the second layer has a higher electrical resistivity than the material comprising the first layer.
摘要:
Protection circuits, design structures, and methods for isolating the gate and gate dielectric of a field-effect transistor from electrostatic discharge (ESD). A protection field-effect transistor is located between a protected field-effect transistor and a voltage rail. Under normal operating conditions, the protection field-effect transistor is saturated so that the protected field-effect transistor is coupled to the voltage rail. The protection field-effect transistor may be driven into a cutoff condition in response to an ESD event while the chip is unpowered, which increases the series resistance of an ESD current path between the gate of the protected field-effect transistor and the voltage rail. The voltage drop across the protection field-effect transistor may reduce the ESD stress on the gate dielectric of the protected field-effect transistor. Alternatively, the gate and source of an existing field-effect transistor are selectively coupled provide ESD isolation to the protected field-effect transistor.
摘要:
Disclosed are embodiments of a self-protected electrostatic discharge field effect transistor (SPESDFET). In the SPESDFET embodiments, a resistance region is positioned laterally between two discrete sections of a deep source/drain region: a first section that is adjacent to the channel region and a second section that is contacted. The second section of the deep source/drain region is silicided, but the first section adjacent to the channel region and the resistance region are non-silicided. Additionally, the gate structure can be either silicided or non-silicided. With such a configuration, the disclosed SPESDFET provides robust ESD protection without consuming additional area and without altering the basic FET design (e.g., without increasing the distance between the deep source/drain regions and the channel region). Also disclosed are embodiments of integrated circuit that incorporates the SPESDFET as an input/output (I/O) pad driver and method embodiments for forming the SPESDFET and the integrated circuit.
摘要:
Device structures, design structures, and fabrication methods for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A portion of a device layer of a semiconductor-on-insulator substrate is patterned to form a device region. A well of a first conductivity type is formed in the epitaxial layer and the device region. A doped region of a second conductivity type is formed in the well and defines a junction with a portion of the well. The epitaxial layer includes an exterior sidewall spaced from an exterior sidewall of the device region. Another portion of the device layer may be patterned to form fins for fin-type field-effect transistors.
摘要:
A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.
摘要:
Protection circuits, design structures, and methods for isolating the gate and gate dielectric of a field-effect transistor from electrostatic discharge (ESD). A protection field-effect transistor is located between a protected field-effect transistor and a voltage rail. Under normal operating conditions, the protection field-effect transistor is saturated so that the protected field-effect transistor is coupled to the voltage rail. The protection field-effect transistor may be driven into a cutoff condition in response to an ESD event while the chip is unpowered, which increases the series resistance of an ESD current path between the gate of the protected field-effect transistor and the voltage rail. The voltage drop across the protection field-effect transistor may reduce the ESD stress on the gate dielectric of the protected field-effect transistor. Alternatively, the gate and source of an existing field-effect transistor are selectively coupled provide ESD isolation to the protected field-effect transistor.
摘要:
Structures and methods for electrostatic discharge (ESD) device control in an integrated circuit are provided. An ESD protection structure includes an input/output (I/O) pad, and an ESD field effect transistor (FET) including a drain connected to the I/O pad, a source connected to ground, and a gate. A first control FET includes a drain connected to the I/O pad, a source connected to the gate of the ESD FET, and a gate connected to ground. A second control FET includes a drain connected to the gate of the ESD FET and the source of the first control FET, a source connected to ground, and a gate connected to the I/O pad.