Abstract:
A fluid receiving chamber including a fluid inlet hole through which a fluid flows from outside, an inner space which contains the fluid, a fluid supply hole through which the fluid flows from the fluid inlet hole to the inner space, and a fluid outlet hole through which the fluid contained in the inner space is discharged to the outside, where the fluid supply hole is disposed above the fluid outlet hole, and the fluid is supplied to the inner space through the fluid supply hole by gravity.
Abstract:
A nano particle tracking device includes a channel structure. The channel structure of the nano particle tracking device includes a pair of microchannels in which a specimen including nano particles is accommodated and which face each other, at least one nano channel which is between the pair of microchannels, which connects the pair of microchannels to each other and through which the nano particles in the specimen are moved, and a nano grating below the nano channel and crossing the nano channel perpendicularly.
Abstract:
A door hinge includes a fixing member (10) fixed to a door frame (100), an actuation frame (20) fixed to a door (200) to enable the door to be opened and closed, a slider (22) coupled between the actuation frame and the fixing member, a rotatable moving guide plate (30) rotatably moved around the hinge (34) when the door is opened, and configured to forwardly push the slider, a guide roller (18) to resiliently support the rotatable movement of the rotatable moving guide plate, and a connection frame (60) having one end connected to a slot (11) of the fixing member by a pin (62) and the other end connected to the actuation frame by the hinge (24) and forwardly pushed out when the door is opened along with the slider.
Abstract:
A nanoparticle-nucleic acid complex and a method of linearizing a target nucleic acid by using the nanoparticle-nucleic acid complex are disclosed. By using the nanoparticle-nucleic acid complex and the method, nucleotide sequence analysis and mapping of a target nucleic acid may be efficiently performed.
Abstract:
A door lock device includes a fixing rack, an operation rack, a solenoid device, an engaging member, and a locking pin. The fixing rack is installed in a receptacle and has a hinge shaft. The operation rack is coupled with the hinge shaft. The solenoid device is installed in the receptacle and has a rod. The engaging member is assembled to the rod and ascends or descends in response to the operation of the solenoid device. The locking pin is installed in the operation rack and performs a locking or unlocking function to the door.
Abstract:
A fluid controlling apparatus including at least one sample chamber for holding a fluid containing target materials; a cleaning chamber for holding a cleaning solution; a first multi-port connected to the at least one sample chamber through a first channel and connected to the cleaning chamber through a second channel; a filter portion, connected to the first multi-port through a third channel, for filtering the target materials; and a first pump, connected to the filter portion, for applying a pressure; and a method of controlling a fluid using the fluid controlling apparatus, which comprises passing the fluid containing the target materials from the at least one sample chamber to the filter portion; and cleaning a path of the fluid by passing the cleaning solution through the path.
Abstract:
A bio material receiving device includes a thin film transistor (“TFT”) including a drain electrode, and a nano well accommodating a bio material. The drain electrode includes the nano well. The TFT may be a bottom gate TFT or a top gate TFT. A nano well array may include a plurality of bio material receiving devices. In a method of operating the bio material receiving device, each of the bio material receiving devices may be individually selected in the nano well array. When the bio material is accommodated in the selected bio material receiving device, a voltage is applied so that another bio material is not accommodated.
Abstract:
A biochip package allowing biochips optimized for high-volume production to be compatible with general-purpose devices and a biochip packaging substrate of the biochip package are provided. The biochip package can include a biochip having a probe array mounted thereon and a biochip packaging substrate on which the biochip is mounted and which has a through cavity exposing a rear surface of the biochip.
Abstract:
Provided is a biochip kit and a method capable of detecting the binding of target molecules in a biological sample to at least one probe on a biochip. The biochip kit includes a housing, a biochip, disposed in the housing, including at least one probe, and a lid, connectedly installed on the housing, such that the lid can open or close the housing.
Abstract:
A package having an improved yield is provided. The package includes a support on which a plurality of biochips are disposed, and a cover bonded to the support and defining a reaction space for each of the plurality of biochips together with the support, the cover including at least one inlet/outlet.