Abstract:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an electric field is applied across the first and second electrodes. An ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
Abstract:
The present disclosure relates to a mobile phone and a method for answering such a phone automatically without user input. In one embodiment, the mobile phone detects that a call is being received. A proximity sensor is then used to detect the presence of a nearby object. For example, this allows a determination to be made whether the mobile phone is within a pocket of the user while the phone is ringing. Then a determination is made whether the proximity sensor changes states. For example, if a user removes the phone from their pocket, the proximity sensor switches from detecting something proximal to detecting that the phone is no longer in the user's pocket. Next, a determination is made whether the proximity sensor is again next to an object, such as an ear. If so, the mobile phone can be automatically answered without further user input.
Abstract:
Exemplary methods, apparatus, and systems are disclosed for authenticating a user to computing device. In one exemplary embodiment, an indication of a request by a user to unlock a mobile device in a locked state is received. One or more images of the face of the user are captured. Facial components of the user from the one or more captured images are extracted. A determination is made as to whether the user is an authorized user or a non-authorized user based at least in part on a comparison of the facial components of the user extracted from the one or more captured images to facial components of the authorized user from one or more authentication images of the authorized stored on the mobile device. If the user is determined to be the authorized user, the mobile device unlocked; otherwise, the mobile device is maintained in its locked state.
Abstract:
Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
Abstract:
A NAND device including a source, a drain and a channel located between the source and drain. The NAND device also includes a plurality of floating gates located over the channel and a plurality of electrically conducting fins. Each of the plurality of electrically conducting fins is located over one of the plurality of floating gates. The plurality of electrically conducting fins include a material other than polysilicon. The NAND device also includes a plurality of control gates. Each of the plurality of control gates is located adjacent to each of the plurality of floating gates and each of the plurality of electrically conducting fins.
Abstract:
A method of making a device includes providing a first device level containing first semiconductor rails separated by first insulating features, forming a sacrificial layer over the first device level, patterning the sacrificial layer and the first semiconductor rails in the first device level to form a plurality of second rails extending in a second direction, wherein the plurality of second rails extend at least partially into the first device level and are separated from each other by rail shaped openings which extend at least partially into the first device level, forming second insulating features between the plurality of second rails, removing the sacrificial layer, and forming second semiconductor rails between the second insulating features in a second device level over the first device level. The first semiconductor rails extend in a first direction. The second semiconductor rails extend in the second direction different from the first direction.
Abstract:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
Abstract:
A non-volatile memory cell includes a first electrode, a steering element, a storage element located in series with the steering element, a plurality of discrete conductive nano-features separated from each other by an insulating matrix, where the plurality of discrete nano-features are located in direct contact with the storage element, and a second electrode. An alternative non-volatile memory cell includes a first electrode, a steering element, a storage element located in series with the steering element, a plurality of discrete insulating nano-features separated from each other by a conductive matrix, where the plurality of discrete insulating nano-features are located in direct contact with the storage element, and a second electrode.
Abstract:
A non-volatile storage system in which a sidewall insulating layer of a floating gate is significantly thinner than a thickness of a bottom insulating layer, and in which raised source/drain regions are provided. During programming or erasing, tunneling occurs predominantly via the sidewall insulating layer and the raised source/drain regions instead of via the bottom insulating layer. The floating gate may have a uniform width or an inverted T shape. The raised source/drain regions may be epitaxially grown from the substrate, and may include a doped region above an undoped region so that the channel length is effectively extended from beneath the floating gate and up into the undoped regions, so that short channel effects are reduced. The ratio of the thicknesses of the sidewall insulating layer to the bottom insulating layer may be about 0.3 to 0.67.
Abstract:
Lithographically-defined spacing is used to define feature sizes during fabrication of semiconductor-based memory devices. Sacrificial features are formed over a substrate at a specified pitch having a line size and a space size defined by a photolithography pattern. Charge storage regions for storage elements are formed in the spaces between adjacent sacrificial features using the lithographically-defined spacing to fix a gate length or dimension of the charge storage regions in a column direction. Unequal line and space sizes at the specified pitch can be used to form feature sizes at less than the minimally resolvable feature size associated with the photolithography process. Larger line sizes can improve line-edge roughness while decreasing the dimension of the charge storage regions in the column direction. Additional charge storage regions for the storage elements can be formed over the charge storage regions so defined, such as by depositing and etching a second charge storage layer to form second charge storage regions having a dimension in the column direction that is less than the gate length of the first charge storage regions.