Abstract:
A printed wiring board, including a printed wiring member which respectively has object conductor that is subjected to electromagnetic wave shielding on at least one surface of an insulating layer; and an electromagnetic wave shielding member which has an electromagnetic wave shielding layer composed of a low-resistance section and a high-resistance section on at least one surface of a base film. The printed wiring member and the electromagnetic wave shielding member are bonded together with interposition of insulating adhesive layers, and with arrangement of the electromagnetic wave shielding layer separately and in opposition so that the object conductor is covered. The electromagnetic wave shielding layer and the object conductor are composed of the same type of conductive material, and the electromagnetic wave shielding layer is not exposed at the circumferential end faces of the printed wiring board.
Abstract:
The present invention provides a non-aromatic saturated hydrocarbon group-containing organopolysiloxane containing the following units (I) to (III): (I) a siloxane unit (T unit) represented by R1SiO3/2: 40 to 99 mol %; (II) a siloxane unit (D unit) represented by R2R3SiO2/2: 59 mol % or less; and (III) a siloxane unit (M unit) represented by R4R5R6SiO1/2: 1 to 30 mol %. There can be an organopolysiloxane, which is soluble in a nonpolar organic solvent so that the organopolysiloxane can be peeled in a short time, and which is hardly soluble in a polar organic solvent to be exemplarily used upon coating a photoresist onto a semiconductor side of a joined substrate and removing the photoresist therefrom so that the organopolysiloxane is not peeled from the supporting substrate upon coating a photoresist onto a semiconductor side of a joined substrate and removing the photoresist therefrom.
Abstract:
A chemically amplified positive resist composition comprising (A) a substantially alkali insoluble polymer having an acidic functional group protected with an acid labile group, (B) an acid generator, and (C) a perfluoroalkyl ethylene oxide adduct or a nonionic fluorinated organosiloxane compound is coated, exposed to UV radiation having a wavelength of at least 150 nm, and developed. The composition has advantages of uniformity and minimized edge crown upon coating, and no scum formation after development.
Abstract:
A film for semiconductor includes a support film, a second adhesive layer, a first adhesive layer and a bonding layer which are laminated together in this order. This film for semiconductor is configured so that it supports a semiconductor wafer laminated on the bonding layer thereof when the semiconductor wafer is diced and the bonding layer is selectively peeled off from the first adhesive layer when a chip is picked up. This film for semiconductor is characterized in that in the case where peel strength at 23° C. of the chip is defined as “F23 (cN/25 mm)” and peel strength at 60° C. of the chip is defined as “F60 (cN/25 mm)”, F23 is in the range of 10 to 80 and F60/F23 is in the range of 0.3 to 5.5. This makes it possible to improve a pickup property of the chip, to thereby prevent generation of defects in a semiconductor element.
Abstract:
According to an aspect of the present invention, there are provided an ion trap mass spectrometry method and an ion trap mass spectrometry device using a mass spectrometer, the mass spectrometer including: an ion source part for ionizing a sample; an ion trap part for trapping ions generated in the ion source; a main high frequency power source for applying a main high frequency voltage to the ion trap part, and an auxiliary high frequency power source for applying an auxiliary high frequency voltage thereto; and a detector for detecting the ions ejected from the ion trap. The ion trap mass spectrometry method and the ion trap mass spectrometry device includes the steps of: accumulating desired ions into the ion trap part by ejecting undesired ions while accumulating ions into the ion trap part; and ejecting undesired ions that remain in the ion trap part and leaving the desired ions in the ion trap part are repeated alternately.
Abstract:
The invention has an object to obtain an organic inorganic composite material having high activity and high selectivity, and suitable as a catalyst material having small elution of an active metal from a carrier, and further to obtain an organosilicon compound suitable for the preparation of the composite material. The composite material is an organic inorganic composite material comprising an organosilicon compound having at least two groups containing reactive silicon at a molecular end, bonded to one silicon atom constituting the organosilicon compound, and an inorganic oxide material, the organosilicon compound and the inorganic oxide material being bonded to each other through a plurality of groups containing reactive silicon of the organosilicon compound. The organosilicon compound is represented by the following general formula (1) or (2). Formula (1) wherein symbols are the same as defined in claim 17. Formula (2) wherein symbols are the same as defined in claim 18.
Abstract:
There is provided an adhesive film for a semiconductor, comprising a thermoplastic resin (A), an epoxy resin (B) and a curing agent (C), wherein a minimum melt viscosity of said adhesive film for a semiconductor is 0.1 Pa·s to 500 Pa·s both inclusive in a temperature range of 50° C. to 180° C. both inclusive at a temperature-rise rate of 10° C./min from room temperature and a content of volatile component is 5.0% or less.
Abstract:
Performing an MS3 with a tandem mass spectrometer causes problems of increase in size of the device and of increase in cost. Likewise, a plural number of times MS/MS analyses are even more difficult. An electrode to create a harmonic potential is disposed in a collision cell, and fragment ions produced by the first-time collision induced dissociation are accumulated in the harmonic potential. Target ions of the subsequent stage are let out, by means of an axial resonance excitation, selectively from the accumulated ions. The ions are excited in the axial direction to have a potential exceeding the harmonic potential. Thereby, the second-time collision induced dissociation is performed by means of a potential difference provided at the subsequent stage. In addition, an operation to return the ions back to the harmonic potential enables a plural number of times MS/MS analyses to be performed.
Abstract:
Disclosed is a process for production of a carboxylic acid ester from a carboxylic acid and an olefin or production of an ether compound from an alcohol and an olefin at low cost and with high yield in an industrially advantageous manner. The process comprises the step of reacting a carboxylic acid with an olefin to yield a corresponding carboxylic acid ester or reacting an alcohol with an olefin to yield a corresponding ether compound. In the process, a catalyst comprising a combination of (i) at least one metal compound selected from an iron compound, a cobalt compound and a nickel compound and (ii) an acidic compound is used.
Abstract:
Disclosed is a polymer comprising a repeating unit represented by the following structural formula (1): wherein R1, R2 and R3 are each a monovalent organic group, l is an integer of 0 to 4, m is an integer of 0 to 4, and n is an integer of 0 to 4. A composition comprising the polymer and a triplet luminescent metal complex compound, and an organic EL device having a luminescent layer formed from the composition are also disclosed. The polymer is capable of forming an organic EL layer having high luminance by a wet process. The organic EL device has a luminescent layer having high luminance.