Abstract:
The present disclosure provides a gas analysis device and a method for detecting sample gas. The gas analysis device includes: an ion mobility spectrometer including an ion mobility tube, an ion gate, a plurality of electrodes, a suppression grid, and a Faraday plate sequentially disposed in the ion mobility tube, wherein the Faraday plate is configured to receive sample ions discharged from the suppression grid, and the Faraday plate is provided with a through hole; a mass spectrometer; a gate valve disposed between the Faraday plate and an ion inlet of the mass spectrometer; and a controller configured to control an opening or closing of the gate valve to allow the sample ions discharged from the suppression grid to flow into the mass spectrometer through the through hole of the Faraday plate when the gate valve is opened.
Abstract:
This disclosure describes a method of adjusting the amplitude of broadband waveforms for isolation, especially during injection to a multipole trapping device. Isolation during injection to a trapping device is known to be an effective way of accumulating a desired population of ions while rejecting unwanted species. The waveform amplitude required to eject unwanted species varies as a function of isolation time, but using automated gain control, the time required to accumulate a given population of ions may vary over several orders of magnitude. Thus, when the injection times are very long, precursor ions of interest are resonated for a long time and may be inadvertently ejected from the trap, using conventional methods. By setting the waveform amplitude lower for longer accumulation times, good isolation efficiency can be maintained for the precursor, while still rejecting unwanted ions.
Abstract:
A linear ion trap includes at least two discrete trapping regions for processing ions, a RF electrical potential generator, a multi-output DC electrical potential generator, and a control unit. The RF electrical potential generator produces two RF waveforms each applied to a pair of pole electrodes of the linear ion trap forming a RF trapping field component to trap ions radially. The multi-output DC electrical potential generator produces multiple DC field components superimposed to the RF field component and distributed across the length of the linear ion trap to control ions axially. The control unit switches the DC electrical potentials and corresponding DC field components collectively forming a first trapping region populated with ions to alter ion potential energy from a first level to a second level, and enables a first ion processing step in at least one of the first and second levels.
Abstract:
This invention relates to mass spectrometry that includes ion trapping in at least one of the stages of mass analysis. In particular, although not exclusively, this invention relates to tandem mass spectrometry where precursor ions and fragment ions are analyzed. A method of mass spectrometry is provided comprising the sequential steps of: accumulating in an ion store a sample of one type of ions to be analyzed; accumulating in the ion store a sample of another type of ions to be analyzed; and mass analyzing the combined samples of the ions; wherein the method comprises accumulating the sample of the one type of ions and/or the sample of another type of ions to achieve a target number of ions based on the results of a previous measurement of the respective type of ions.
Abstract:
A method is disclosed for operating a mass spectrometer having a Fourier Transform (FT) analyzer, such as an orbital electrostatic trap mass analyzer, to avoid peak coalescence and/or other phenomena arising from frequency-shifting caused by ion-ion interactions. Ions of a first group are mass analyzed, for example in a quadrupole ion trap analyzer, to generate a mass spectrum. The estimated frequency shift of the characteristic periodic motion in the FT analyzer is calculated for one or more ion species of interest based on the intensities of adjacent (closely m/z-spaced) ion species. If the estimated frequency shift(s) for the one or more ion species exceeds a threshold, then a target ion population for an FT analyzer scan is adjusted downwardly to a value that produces a shift of acceptable value. An analytical scan of a second ion group is performed at the adjusted target ion population.
Abstract:
A method of mass analysis and a mass spectrometer are provided wherein a batch of ions is accumulated in a mass analyser; the batch of ions accumulated in the mass analyser is detected using image current detection to provide a detected signal; the number of ions in the batch of ions accumulated in the mass analyser is controlled using an algorithm based on a previous detected signal obtained using image current detection from a previous batch of ions accumulated in the mass analyser; wherein one or more parameters of the algorithm are adjusted based on a measurement of ion current or charge obtained using an independent detector located outside of the mass analyser.
Abstract:
A method of mass analysis and a mass spectrometer are provided wherein a batch of ions is accumulated in a mass analyzer; the batch of ions accumulated in the mass analyzer is detected using image current detection to provide a detected signal; the number of ions in the batch of ions accumulated in the mass analyzer is controlled using an algorithm based on a previous detected signal obtained using image current detection from a previous batch of ions accumulated in the mass analyzer; wherein one or more parameters of the algorithm are adjusted based on a measurement of ion current or charge obtained using an independent detector located outside of the mass analyzer.
Abstract:
A method of performing imaging mass spectrometry of a sample. The method comprises performing a first mass analysis of the sample using a first mass analyzer comprising a multi-pixel ion detector to obtain first mass spectral data representative of pixels of the sample. The method further comprises identifying clusters of pixels sharing one or more characteristics of first mass spectral data. The method also comprises performing a second mass analysis of the sample using a second mass analyzer to obtain second mass spectral data at at least one location in each cluster, wherein the number of locations is significantly less than the number of pixels in each cluster, said second mass analysis being of higher resolution than said first mass analysis. Also a mass spectrometry apparatus configured for carrying out the method.
Abstract:
A method for mass analyzing ions comprising a restricted range mass-to-charge (m/z) ratios comprising (i) performing a survey mass analysis, using a first mass analyzer employing indirect detection of ions by image current detection, to measure a flux of ions having m/z ratios within said range and (ii) performing a dependent mass analysis, using a second mass analyzer, of an optimal quantity of ions having m/z ratios within said range, said optimal quantity collected for a time period determined by the measured ion flux, the method characterized in that: the time period is determined using a corrected ion flux that includes a correction that comprises an estimate of the quantity of ions that are undetected by the first mass analyzer.
Abstract:
A mass spectrometer including chromatogram creation means for creating a chromatogram showing changes over time in an ion intensity within a predetermined mass range based on the MS analysis results, and timing determination means for determining a timing to perform MS/MS analysis based on the chromatogram. The timing determination means determines, as a timing to perform MS/MS analysis, a point in time at which a signal intensity in the chromatogram reaches a predetermined upper limit after exceeding a predetermined lower limit or a point in time at which a signal intensity in the chromatogram reaches a top of a peak without reaching the upper limit after exceeding the lower limit. It is thus possible to collect precursor ions at a timing at which the signal intensity of a peak originating from sample components is highest between the upper limit and lower limit, thereby obtaining a high quality MS/MS spectrum.