Abstract:
A signal processing unit comprises: at least one data signal input line adapted to receive a measured data signal generated by an image current, the measured data signal comprising an added crosstalk signal induced by a source of electromagnetic disturbance; at least one disturbance signal input line adapted to receive a decoupled disturbance signal, extracted from the source of electromagnetic disturbance; an output line adapted to supply a compensated data signal; a conditioning module, to which the decoupled disturbance signal is supplied via the disturbance signal input line and which provides a compensation signal; and an adding module, to which the measured data signal and the compensation signal are provided and in which the measured data signal and the compensation signal are superposed, whereby the decoupled disturbance signal is conditioned by the conditioning module such that the compensation signal essentially corresponds to an inverted added crosstalk signal.
Abstract:
An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U′(r, ϕ, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U′(r, ϕ, z) is the result of a perturbation W to an ideal field U(r, ϕ, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ϕ, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2π radians over an ion detection period Tm.
Abstract:
A method and corresponding apparatus are disclosed for analysis of a peptide-containing sample. The sample is prepared by adding isotopically-labeled peptides corresponding to endogenous peptides of interest, and the prepared sample is analyzed by liquid chromatography-mass spectrometry (LCMS). Detection in a high-resolution, accurate mass (HRAM) MS1 spectrum of a precursor ion matching an isotopically-labeled peptide triggers acquisition of an MS/MS spectrum (preferably acquired in an ion trap or other fast mass analyzer) to determine if a product ion is present matching a characteristic product ion (e.g., the y1 ion) of the isotopically-labeled peptide. If the characteristic product ion is present, then a HRAM MS/MS spectrum is acquired for detection and quantitation of the corresponding endogenous peptide.
Abstract:
A method for examining a gas by mass spectrometry includes: ionizing the gas for producing ions; and storing, exciting and detecting at least some of the produced ions in an FT ion trap. Producing and storing the ions in the FT ion trap and/or exciting the ions prior to the detection of the ions in the FT ion trap includes at least one selective IFT excitation, such as a SWIFT excitation, which is dependent on the mass-to-charge ratio of the ions. The disclosure further relates to a mass spectrometer. A mass spectrometer includes: an FT ion trap; and an excitation device for storing, exciting, and detecting ions in the FT ion trap.
Abstract:
A mass spectrometer comprises: an ion source that generates ions having an initial range of mass-to-charge ratios; an auxiliary ion detector, downstream from the ion source that receives a plurality of first ion samples derived from the ions generated by the ion source and determines a respective ion current measurement for each of the plurality of first ion samples; a mass analyser, downstream from the ion source that receives a second ion sample derived from the ions generated by the ion source and to generate mass spectral data by mass analysis of the second ion sample; and an output stage that establishes an abundance measurement associated with at least some of the ions generated by the ion source based on the ion current measurements determined by the auxiliary ion detector.
Abstract:
An ion spectrometer is provided, comprising: an ion source, arranged to generate ions continuously with a first range of mass to charge ratios; and an ion trap, arranged to receive ions from the ion source along an axis, and to eject ions with a second range of mass to charge ratios orthogonally to that axis, the second range of mass to charge ratios being narrower than the first range of mass to charge ratios. In some embodiments, ions generated by the ion source continuously flow into the ion trap. Additionally or alternatively, ion optics receive ions ejected from the ion trap and cool the ions without substantial fragmentation. An ion analyser receives ions ejected from the ion trap or ion optics and separates the ions in accordance with at least one characteristic of the ions.
Abstract:
An apparatus for cleaning a floor surface including an upright part having a user graspable handle and a base assembly including a first base part connected to the upright part and a second base part connected to the first base part. The second base part includes a cleaning member. The apparatus further includes a device for effecting movement of the first and second base parts relative to each other. The device effects movement of the second base part between respective first and second conditions and the second base part has a first passage with a respective inlet and a second passage with a respective inlet. When the second base part is in its second condition the inlet of the second passage is positioned closer to a floor surface than it is positioned when the second base part is in its first condition.
Abstract:
An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U′(r, Φ, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U′(r, Φ, z) is the result of a perturbation W to an ideal field U(r, Φ, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, Φ, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 π radians over an ion detection period Tm.
Abstract:
The invention provides a method for acquiring a mass spectrum with a Fourier transform mass spectrometer, wherein analyte ions and additional reporter ions oscillate at mass specific frequencies in a measuring cell of the frequency mass spectrometer and interact by Coulomb forces; the image current signal induced by the reporter ion is measured; and mass signals of the analyte ions are determined from a sideband signal of the reporter ions in the frequency domain or from the instantaneous frequency of the reporter ions in the time domain.
Abstract:
A method is proposed for assessing the vacuum conditions in a mass spectrometer (10) such as an ion cyclotron resonance or orbital trapping mass spectrometer. Such mass spectrometers generate a transient detection signal resulting from ions of one or species in an ion trap (80). The parameters of the trap and/or introduced ions are adjusted so as to cause the decay rate of the transient in respect of the ion species to be dominated by collisional effects. Typically this can be achieved by introducing ions into the trap (80) in quantities such that ion clouds of a particular ion species self bunch. The rate of decay of the transient signal in that case is determined and compared with one or more threshold decay rates. This in turn can provide an indication of vacuum conditions within the trap (80).