Abstract:
A microelectronic device includes a substrate including a via hole extending therethrough, a porous layer on sidewalls of the via hole, and a conductive via electrode extending through the via hole between the sidewalls thereof. The porous layer includes a plurality of pores therein that reduce a dielectric constant of the porous layer. Related fabrication methods are also discussed.
Abstract:
A method of forming a gate electrode of a semiconductor device is provided, the method including: forming a plurality of stacked structures each comprising a tunnel dielectric layer, a first silicon layer for floating gates, an intergate dielectric layer, a second silicon layer for control gates, and a mask pattern, on a semiconductor substrate in the stated order; forming a first interlayer dielectric layer between the plurality of stacked structures so that a top surface of the mask pattern is exposed; selectively removing the mask pattern of which the top surface is exposed; forming a third silicon layer in an area from which the hard disk layer was removed, and forming a silicon layer comprising the third silicon layer and the second silicon layer; recessing the first interlayer dielectric layer so that an upper portion of the silicon layer protrudes over the he first interlayer dielectric layer; and forming a metal silicide layer on the upper portion of the silicon layer.
Abstract:
A method of fabricating a semiconductor device includes: forming a first polysilicon layer having a first thickness in a peripheral circuit region formed on a substrate; forming a stack structure comprising a first tunneling insulating layer, a charge trap layer, and a blocking insulating layer in a memory cell region formed on the substrate; forming a second polysilicon layer having a second thickness that is less than the first thickness on the blocking insulating layer; and forming gate electrodes by siliciding the first and second polysilicon layers.
Abstract:
A method of forming a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate, and the interlayer insulating layer may have a contact hole therein exposing a portion of the semiconductor substrate. A single crystal semiconductor plug may be formed in the contact hole and on portions of the interlayer insulating layer adjacent the contact hole opposite the semiconductor substrate, and portions of the interlayer insulating layer opposite the semiconductor substrate may be free of the single crystal semiconductor plug. Portions of the single crystal semiconductor plug in the contact hole may be removed while maintaining portions of the single crystal semiconductor plug on portions of the interlayer insulating layer adjacent the contact hole as a single crystal semiconductor contact pattern. After removing portions of the single crystal semiconductor plug, a single crystal semiconductor layer may be formed on the interlayer insulating layer and on the single crystal semiconductor contact pattern. A second interlayer insulating layer may be formed on the single crystal semiconductor layer, and a common contact hole may be formed through the second interlayer insulating layer, through the single crystal semiconductor layer, and through the first interlayer insulating layer to expose a portion of semiconductor substrate. In addition, a conductive contact plug may be formed in the common contact hole in contact with the semiconductor substrate. Related devices are also discussed.
Abstract:
A method of forming a buried gate electrode prevents voids from being formed in a silicide layer of the gate electrode. The method begins by forming a trench in a semiconductor substrate, forming a conformal gate oxide layer on the semiconductor in which the trench has been formed, forming a first gate electrode layer on the gate oxide layer, forming a silicon layer on the first gate electrode layer to fill the trench. Then, a portion of the first gate electrode layer is removed to form a recess which exposed a portion of a lateral surface of the silicon layer. A metal layer is then formed on the semiconductor substrate including on the silicon layer. Next, the semiconductor substrate is annealed while the lateral surface of the silicon layer is exposed to form a metal silicide layer on the silicon layer.
Abstract:
Methods of forming metal silicide layers include a convection-based annealing step to convert a metal layer into a metal silicide layer. These methods may include forming a silicon layer on a substrate and forming a metal layer (e.g., nickel layer) in direct contact with the silicon layer. A step is then performed to convert at least a portion of the metal layer into a metal silicide layer. This conversion step is includes exposing the metal layer to an inert heat transferring gas (e.g., argon, nitrogen) in a convection or conduction apparatus.
Abstract:
Methods of forming a metal salicide layer can include forming a metal layer on a substrate and forming a metal silicide layer on the metal layer using a first thermal process at a first temperature. Then a second process is performed, in-situ with the first thermal process, on the metal layer at a second temperature that is less than the first temperature.
Abstract:
There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
Abstract:
A stacked semiconductor device comprises a lower transistor formed on a semiconductor substrate, a lower interlevel insulation film formed on the semiconductor substrate over the lower transistor, an upper transistor formed on the lower interlayer insulation film over the lower transistor, and an upper interlevel insulation film formed on the lower interlevel insulation film over the upper transistor. The stacked semiconductor device further comprises a contact plug connected between a drain or source region of the lower transistor and a source or drain region of the upper transistor, and an extension layer connected to a lateral face of the source or drain region of the upper transistor to enlarge an area of contact between the source or drain region of the upper transistor and a side of the contact plug.
Abstract:
A method of forming a silicide film can include forming a first metal film on a silicon substrate and forming a second metal film on the first metal film at a temperature sufficient to react a first portion of the first metal film in contact with the silicon substrate to form a metal-silicide film. The second metal film and a second portion of the first metal film can be removed so that a thin metal-silicide film remains on the silicon substrate. Then, a metal wiring film can be formed on the thin metal-silicide film and the metal wiring film can be etched.