摘要:
The biosensor comprises a modular biorecognition element and a modular flexible arm element. The biorecognition element and the flexible arm element are each labeled with a signaling element. The flexible arm contains an analog of an analyte of interest that binds with the biorecognition element, bringing the two signaling elements in close proximity, which establishes a baseline fluorescence resonance energy transfer (FRET). When an analyte of interest is provided to the biosensor, the analyte will displace the analyte analog, and with it, the signaling module of the modular flexible arm, causing a measurable change in the FRET signal in a analyte concentration dependent manner. The modularity of different portions of the biosensor allows functional flexibility. The biosensor operates without additional development reagents, requiring only the presence of analyte or target for function.
摘要:
The biosensor comprises a modular biorecognition element and a modular flexible arm element. The biorecognition element and the flexible arm element are each labeled with a signaling element. The flexible arm contains an analog of an analyte of interest that binds with the biorecognition element, bringing the two signaling elements in close proximity, which establishes a baseline fluorescence resonance energy transfer (FRET). When an analyte of interest is provided to the biosensor, the analyte will displace the analyte analog, and with it, the signaling module of the modular flexible arm, causing a measurable change in the FRET signal in a analyte concentration dependent manner. The modularity of different portions of the biosensor allows functional flexibility. The biosensor operates without additional development reagents, requiring only the presence of analyte or target for function.
摘要:
The invention relates to a nanoscale antenna including a nucleic acid scaffold having a structure selected from the group consisting of a Holliday junction, a star, and a dendrimer; and a plurality of fluorophores attached to the scaffold and configured as a FRET cascade comprising at least three different types of fluorophores, arranged with (a) a plurality of initial donor fluorophores fixed in exterior positions on the structure, (b) a terminal acceptor fluorophore fixed in a central position on the structure, and (c) a plurality of intermediate fluorophores fixed in positions on the scaffold between the initial acceptor fluorophores and the terminal acceptor fluorophores.
摘要:
Genetic fusions of proteins, for example single-domain antibodies (sdAbs), with a positively-charged domain enhanced immobilization of active protein in a desired orientation.
摘要:
Genetic fusions of proteins, for example single-domain antibodies (sdAbs), with a positively-charged domain enhanced immobilization of active protein in a desired orientation.
摘要:
Described herein are new recognition elements (antibodies or functional fragments thereof) that effectively bind to trinitrotoluene (TNT). Also disclosed is a single chain fragment recognition element.
摘要:
The invention relates to a nanoscale antenna including a nucleic acid scaffold having a structure selected from the group consisting of a Holliday junction, a star, and a dendrimer; and a plurality of fluorophores attached to the scaffold and configured as a FRET cascade comprising at least three different types of fluorophores, arranged with (a) a plurality of initial donor fluorophores fixed in exterior positions on the structure, (b) a terminal acceptor fluorophore fixed in a central position on the structure, and (c) a plurality of intermediate fluorophores fixed in positions on the scaffold between the initial acceptor fluorophores and the terminal acceptor fluorophores.
摘要:
Described herein are new recognition elements (antibodies or functional fragments thereof) that effectively bind to trinitrotoluene (TNT). Also disclosed is a single chain fragment recognition element.
摘要:
The biosensor comprises a modular biorecognition element and a modular flexible arm element. The biorecognition element and the flexible arm element are each labeled with a signaling element. The flexible arm contains an analog of an analyte of interest that binds with the biorecognition element, bringing the two signaling elements in close proximity, which establishes a baseline fluorescence resonance energy transfer (FRET). When an analyte of interest is provided to the biosensor, the analyte will displace the analyte analog, and with it, the signaling module of the modular flexible arm, causing a measurable change in the FRET signal in a analyte concentration dependent manner. The modularity of different portions of the biosensor allows functional flexibility. The biosensor-operates without additional development reagents, requiring only the presence of analyte or target for function.
摘要:
Methods of producing a single-domain antibody (sdAb) include causing a bacteria to express the sdAb into cytoplasm of the bacteria, wherein the sdAb is expressed as a fusion protein with the acid tail of α-synuclein; and then purifying the sdAb, wherein the fusion protein is expressed free of a periplasmic location tag. Such antibodies have the unexpected ability to refold after thermal denaturation.