Abstract:
A method of performing salicide processes on a MOS transistor, wherein the MOS transistor comprises a gate structure and a source/drain region, the method comprising: performing a selective growth process to form a silicon layer on the top of the gate and the source/drain region; performing an ion implantation process to form a retarded interface layer between the silicon layer and the gate and source/drain region; forming a metal layer on the silicon layer; and reacting the metal layer with the silicon layer for forming a silicide layer.
Abstract:
A salicide process is described, wherein a substrate with an NMOS transistor and a PMOS transistor thereon is provided. A mask layer is formed over the substrate covering the PMOS transistor but exposing the NMOS transistor, and then a pre-amorphization implantation (PAI) step is conducted to the substrate using the mask layer as a mask. After the mask layer is removed, a salicide layer is formed on the NMOS transistor and the PMOS transistor.
Abstract:
A substrate having an etch stop layer and at least a dielectric layer disposed from bottom to top is provided. The dielectric layer is then patterned to form a plurality of openings exposing the etch stop layer. A dielectric thin film is subsequently formed to cover the dielectric layer, the sidewalls of the openings, and the etch stop layer. The dielectric thin film disposed on the dielectric layer and the etch stop layer is then removed.
Abstract:
A semiconductor device having nickel suicide and a method for fabricating nickel silicide. A semiconductor substrate having a plurality of doped regions is provided. Subsequently, a nickel layer is formed on the semiconductor substrate, and a first rapid thermal process (RTP) is performed to react the nickel layer with the doped regions disposed thereunder. Thereafter, the unreacted nickel layer is removed, and a second rapid thermal process is performed to form a semiconductor device having nickel silicide. The second rapid thermal process is a spike anneal process whose process temperature is between 400 and 600° C.
Abstract:
A method of fabricating the semiconductor device for preventing polysilicon line from being damaged during removal of a photoresist layer. The method begins by forming polysilicon lines on a core device region and an electrostatic discharge protection device region of a substrate. A plurality of offset spacers is formed on sidewalls of the polysilicon lines. After the offset spacers are formed, a photoresist layer is formed over the substrate to cover the core device region, while exposing the electrostatic discharge protection device region. With the photoresist layer serving as a mask, a punch-through ion implantation is performed on the electrostatic discharge protection device region before the photoresist layer is removed. Next, a plurality of lightly doped source/drain regions is formed in the core device region. A spacer is further formed on the edge of the offset spacer, followed by forming source/drain regions in the core device region and the electrostatic discharge protection device. Since the offset spacers are formed on the sidewalls of the polysilicon lines before the photoresist layer is removed, the offset spacers can protect the polysilicon lines from being broken.
Abstract:
An opening structure includes a semiconductor substrate, at least one dielectric layer disposed on the semiconductor substrate, wherein the dielectric layer has a plurality of openings exposing the semiconductor substrate, and each of the openings has a sidewall, a dielectric thin film covering at least a portion of the sidewall of each of the openings, and a metal layer filled in the openings.
Abstract:
A semiconductor device having nickel silicide and a method for fabricating nickel silicide. A semiconductor substrate having a plurality of doped regions is provided. Subsequently, a nickel layer is formed on the semiconductor substrate, and a first rapid thermal process (RTP) is performed to react the nickel layer with the doped regions disposed thereunder. Thereafter, the unreacted nickel layer is removed, and a second rapid thermal process is performed to form a semiconductor device having nickel silicide. The second rapid thermal process is a spike anneal process whose process temperature is between 400 and 600° C.
Abstract:
A semiconductor device having nickel suicide and a method for fabricating nickel silicide. A semiconductor substrate having a plurality of doped regions is provided. Subsequently, a nickel layer is formed on the semiconductor substrate, and a first rapid thermal process (RTP) is performed to react the nickel layer with the doped regions disposed there under. Thereafter, the unreacted nickel layer is removed, and a second rapid thermal process is performed to form a semiconductor device having nickel silicide. The second rapid thermal process is a spike anneal process whose process temperature is between 400 and 600° C.
Abstract:
A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
Abstract:
A detachable sponge device for a spin coating machine used to coat a liquid material over a semiconductor wafer is provided. The detachable sponge device is used to prevent the solvent that is jetted on the edge of the wafer from being oversprayed elsewhere on the wafer. The detachable sponge device is composed of a curved mounting piece and a corrugated piece of sponge attached on the curved inner side of the mounting piece. The mounting piece can be detachably mounted on the spin coating machine. The corrugated piece of sponge can absorb splattered particles of solvent from the wafer which can thus be prevented from bouncing back onto the wafer. The planarization of the coating of SOG on the wafer thus will not be affected by splattering particles of the solvent. Excellent results of planarization of SOG or photoresist layers can thus be achieved.