Abstract:
A capacitor dielectric structure of a deep trench capacitor for a DRAM cell. A semiconductor silicon substrate is provided wit a deep trench. Silicon nitride deposition is used to form a silicon nitride layer on the sidewall and bottom of the deep trench. An oxynitride process with wet oxidation and N2O reactive gas is used to form an oxynitride layer on the silicon nitride layer. A post oxynitride growth annealing is performed on the oxynitride layer.
Abstract:
Methods of manufacturing are provided. In one aspect, a method of manufacturing is provided that includes forming first and second gate stacks on a substrate and forming an insulating layer on the substrate. The insulating layer has portions adjacent to the first stack and portions adjacent to the second gate stack. A first pair of insulating structures is formed adjacent to the first gate stack and a second pair of insulating structures is formed adjacent to the second gate stack. The first pair of insulating structures is removed. The portions of the insulating layer adjacent to the first gate stack are thickened while the second pair of insulating structures prevents thickening of the portions of the insulating film adjacent to the second gate stack. Differential insulating layer thickness for different gate devices is permitted to enable reduction in leakage currents for selected devices without harming speed performance for others.
Abstract:
In a semiconductor device including a first conductive layer, the first conductive layer is treated with a nitrogen/hydrogen plasma before an additional layer is deposited thereover. The treatment stuffs the surface with nitrogen, thereby preventing oxygen from being adsorbed onto the surface of the first conductive layer. In one embodiment, a second conductive layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates an oxide formed between the two layers as a result of subsequent thermal treatments. In another embodiment, a dielectric layer is deposited onto the first conductive layer, and the plasma treatment lessens if not eliminates the ability of the first conductive layer to incorporate oxygen from the dielectric.
Abstract:
The present invention relates generally to semiconductor fabrication and more specifically to simultaneous formation of capacitors, resistors and metal oxide semiconductor.
Abstract:
A new method to form ROM devices in the manufacture of an integrated circuit device is achieved. The method comprises providing a semiconductor substrate. MOS gates are formed overlying the substrate. Ions are implanted into the substrate to form lightly doped drains for the MOS gates. A masking layer is used to offset the lightly doped drains from selective MOS gates to thereby form constant-OFF MOS gates. Spacers are next formed on the sidewalls of the MOS gates. Finally, ions are implanted into the substrate to form source and drain regions for the MOS gates to thereby complete the ROM devices in the manufacture of said integrated circuit device. The method may be extended to form ROM devices from Flash gates in a FlashROM process.
Abstract:
A method is provided for forming dual work function gate electrodes. A dielectric layer is provided outwardly of a substrate. A metal layer is formed outwardly of the dielectric layer. A silicon-germanium layer is formed outwardly of the metal layer. A first portion of the silicon-germanium layer is removed to expose a first portion of the metal layer, with a second portion of the silicon-germanium layer remaining over a second portion of the metal layer. A silicon-germanium metal compound layer is formed from the second portion of the silicon-germanium layer and the second portion of the metal layer. A first gate electrode comprising the first portion of the metal layer is formed. A second gate electrode comprising the silicon-germanium metal compound layer is formed.
Abstract:
This invention is characterized in that, a gate electrode 27F formed on a P-type well 3 via a gate oxide film 9, a high-concentration N-type source layer and a high-concentration N-type drain layer 15 respectively formed apart from the gate electrode and a low-concentration N-type source layer and a low-concentration H-type drain layer respectively formed so that they respectively surround the N-type source layer and the N-type drain layer 10 and respectively parted by a P-type body layer formed under the gate electrode 27F are provided.
Abstract:
A semiconductor device for reducing junction capacitance by an additional low dose super deep source/drain implant and a method for its fabrication are disclosed. In particular, the super deep implant is performed after spacer formation to significantly reduce junction capacitance in the channel region.
Abstract:
Mask ROM cell and method of fabricating the same, is disclosed, including a semiconductor substrate of a first conductivity type, a plurality of impurity diffusion regions of a second conductivity type, formed in the semiconductor substrate in one direction, having a predetermined distance therebetween, an insulating layer formed on a portion of the semiconductor substrate, corresponding to each impurity diffusion region, a gate insulating layer formed on the semiconductor substrate, and a plurality of conductive lines formed on the gate insulating layer and insulating layer in a predetermined interval, being perpendicular to the impurity diffusion regions.
Abstract:
The present invention includes a technique for making a dual voltage integrated circuit device. A gate dielectric layer is formed on a semiconductor substrate and a gate material layer is formed on the dielectric layer. A first region of the gate material layer is doped to a first nonzero level and a second region of the gate material level is doped to a second nonzero level greater than the first level. A first field effect transistor is defined that has a first gate formed from the first region. Also, a second field effect transistor is defined that has a second gate formed from the second region. The first transistor is operable at a gate threshold voltage greater than the second transistor in accordance with a difference between the first level and the second level.