摘要:
Disclosed are a silicon nitride ceramic sintered body and preparation method thereof. The silicon nitride ceramic sintered body includes a sintered bulk and a hard surface layer having a thickness of 10-1000 μm, formed on a surface of the sintered bulk, wherein the sintered bulk comprises a first silicon nitride crystalline phase and a first grain boundary phase; the hard surface layer comprises a second silicon nitride crystalline phase and a second grain boundary phase; the first grain boundary phase comprises a metal tungsten phase being tungsten elementary substance and/or a tungsten alloy; the second grain boundary phase comprises tungsten carbide particles; tungsten element in the metal tungsten phase accounts for 80-100 wt % of total tungsten element in the first grain boundary phase; and tungsten element in the tungsten carbide particles accounts for 60-100 wt % of total tungsten element in the second grain boundary phase.
摘要:
Disclosed are a silicon nitride ceramic sintered body and a-preparation method thereof. The silicon nitride ceramic sintered body includes a sintered bulk and a hard surface layer having a thickness of 10-1000 μm, formed on a surface of the sintered bulk, wherein the sintered bulk comprises a first silicon nitride crystalline phase and a first grain boundary phase; the hard surface layer comprises a second silicon nitride crystalline phase and a second grain boundary phase; the first grain boundary phase comprises a metal tungsten phase being tungsten elementary substance and/or a tungsten alloy; the second grain boundary phase comprises tungsten carbide particles; tungsten element in the metal tungsten phase accounts for 80-100 wt % of total tungsten element in the first grain boundary phase; and tungsten element in the tungsten carbide particles accounts for 60-100 wt % of total tungsten element in the second grain boundary phase.
摘要:
Disclosed is an environment-friendly and flame-retardant abradable seal coating material with an ultra-low density and a use method thereof. The seal coating material includes a component A and a component B packaged separately; the component A includes 20-30 wt % of a curing agent for bisphenol A epoxy resin, 20-30 wt % of a liquid phosphorus-containing curing agent, 20-40 wt % of a hollow glass microbead, 1-5 wt % of 2,4,6-tris(dimethylaminomethyl)phenol, 5-15 wt % of dimethyl methylphosphonate and 0.5-3 wt % of a silane coupling agent; the component B includes 30-40 wt % of a bisphenol A epoxy resin, 30-40 wt % of a liquid phosphorus-containing epoxy resin, 20-30 wt % of a hollow glass microbead, 0-10 wt % of a liquid acrylonitrile-butadiene rubber and 0.5-3 wt % of a silane coupling agent. The method includes: mixing the component A and the component B to obtain a coating, and applying the obtained coating to a surface of a part for curing.
摘要:
Disclosed is a method for preparing an attapulgite-based pH-responsive antibacterial material, including: directly spraying a natural aldehyde-based antibacterial agent onto an attapulgite powder under stirring, and constantly stirring the attapulgite powder for 20-30 min; grinding the attapulgite powder in a ball mill for 30-60 min to obtain a ground attapulgite powder; placing the ground attapulgite powder in a stirred tank, and spraying a chitosan-citric acid aqueous solution onto the ground attapulgite powder; after spraying, constantly stirring the ground attapulgite powder for 30-120 min; and finally drying the ground attapulgite powder to obtain a dried attapulgite powder, sieving the dried attapulgite powder to obtain a sieved attapulgite powder, and packaging the sieved attapulgite powder to obtain the antibacterial material.
摘要:
Disclosed is an oil-containing fiber-polymer self-lubricating composite material. The composite material includes a resin matrix and an oil-containing fiber dispersed in the resin matrix, wherein a mass ratio of the resin matrix to the oil-containing fiber is in the range of 100:(1-10); the resin matrix is a photocurable resin or a thermosetting resin; the oil-containing fiber comprises a natural fiber and a lubricating oil adsorbed in the natural fiber.
摘要:
The present disclosure belongs to the technical field of polymer materials, and in particular relates to a chain extender and a preparation method and application thereof, a recyclable thermosetting polyurethane and a preparation method thereof. The present disclosure provides a chain extender whose chemical formula is shown in formula I. The chain extender provided by the present disclosure contains two types of dynamic covalent bonds, and the total number of dynamic covalent bonds is 4. The thermosetting polyurethane prepared by the provided chain extender has better hot-pressing repair efficiency. The results of the examples show that under the same hot-pressing conditions, the repair efficiency of the thermosetting polyurethane prepared by the 4,4′-dithiodianiline chain extender is 59%. The repair efficiency of thermosetting polyurethane is 97%, which is significantly improved.
摘要:
A reaction system and method for producing polyoxymethylene dialkyl ethers (RO(CH2O)nR, n=1-8) by continuous acetalation of formaldehyde and aliphatic alcohol in the presence of an acid ionic liquid catalyst. The reaction system includes an acetalation reaction unit, a product separation unit, and a catalyst regeneration unit. The recyclable material and catalyst are separated by combining extraction and rectification, and a recovery rate of more than 99% for the catalyst is achieved. Water, as the byproduct, is separated from the reaction system by destroying the azeotrope of water, alcohol, aldehyde, and RO(CH2O)nR, so that the product separation and catalyst regeneration are facilitated and the catalytic cycle is achieved.
摘要:
The invention relates to a reaction system and process for continuously preparing polymethoxy dimethyl ether (DMM3-8) by a continuous acetalization reaction between an aqueous formaldehyde solution or paraformaldehyde and methanol in the presence of a functionalized acidic ionic liquid as a catalyst. The reaction system of the invention preferably comprises a formaldehyde-concentrating unit, a vacuum-drying unit, an acetalization reaction unit, a product-separating unit and a catalyst-regenerating unit. The process of the invention uses aqueous formaldehyde solution as an initial raw material, which is concentrated in the formaldehyde-concentrating unit to a concentrated formaldehyde of 50˜80 wt. %, and vacuum-dried to paraformaldehyde, or uses paraformaldehyde as raw material directly, then obtains DMM3-8 by an acetalization reaction. The raw materials of the reaction used in the invention are cheap and available easily, and the utilization rate of formaldehyde is high; an efficient separation between the catalyst and product, as well as the reuse of the catalyst and raw materials, are realized by a separation mode of combining extraction and rectification together.
摘要:
It is related to a method for preparing polyoxymethylene dimethyl ethers by a continuous acetalation reaction of trioxymethylene and methanol or methylal catalyzed by an ionic liquid. The processing apparatus used in the method includes a reaction zone, a separation zone, a catalyst regeneration zone and a product dehydration zone. A manner of circulating tubular reaction is used, resulting in a high external heat exchange efficiency, a simple structure of design and a low investment. A film evaporator is used, realizing a rapid separation and recycling of the light component, with a high separation efficiency. The separation of the catalyst solution from the crude product is simple, thereby realizing the regeneration and recycling of the catalyst.
摘要:
The present invention discloses a method for preparing isocyanates by liquid-phase catalytic thermal cracking. In this method, in a reaction-rectification thermal cracking reactor, using a catalyst composition comprising a superfine powder metal oxide catalyst and an ionic liquid, an alkyl or aryl dialkylurethane, or multialkylurethane being a reactant is liquid-phase thermal cracked for a reaction time of 0.5-3 h under a reaction temperature of 160-220° C. and an absolute pressure of 1000-8000 Pa so as to prepare the corresponding isocyanate. The invention has the characteristics of low thermal cracking temperature, high yield of target products, relatively simple reaction apparatus and good universality for substrates (the yields of HDI, MDI, TDI, HMDI, NDI and IPDI or the like are all>85%) and the like.