摘要:
A field effect transistor of the present invention is formed in a strain effect semiconductor layer, represented by a strain effect silicon layer, formed in an upper layer of a semiconductor substrate. A source/a drain of the field effect transistor are formed only in the strain effect silicon layer. The field effect transistor may be formed as an nMOS transistor, and a pMOS transistor may be formed in the strain effect silicon layer while being isolated from the nMOS transistor through an isolation region. A logic circuit can be formed of these transistors. Although when an nMOS transistor or a pMos transistor is employed in an application requiring a high performance at a low voltage, there occurs a current leak because the junction of a source/a drain is positioned in a silicon germanium layer having a low band gap or formed at an interface of silicon/silicon germanium, the field effect transistor of the present invention prevents occurrence of such a current leak.
摘要:
A semiconductor device according to an aspect of the present invention having a first gate insulating film formed in a first active region of a semiconductor substrate and having a first film thickness, and a second gate insulating film formed in a second active region of the semiconductor substrate and having a second film thickness smaller than the first film thickness, wherein a semiconductor substrate surface in the first active region is lower than that in the second active region is provided.
摘要:
Ferroelectric capacitors include a support insulating film on an integrated circuit substrate and having a trench therein. A lower electrode is on sidewalls and a bottom surface of the trench. A seed conductive film covers the lower electrode. A ferroelectric film is provided on the support insulating film and the seed conductive film and an upper electrode is provided on the ferroelectric film. The lower electrode may fill the trench and the ferroelectric film may extend over all of the seed conductive film and the support insulating film adjacent the seed conductive film.
摘要:
Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate. A metal layer is deposited over a gate dielectric layer within the gate openings to form metal gates. One or both of the gates are oxygen implanted and oxidized. The PMOS gate has the higher work function.
摘要:
The present invention pertains to formation of a PMOS transistor wherein a layer of silicon or SiGe inhibits p-type dopant from entering into an underlying gate dielectric layer. The p-type dopant can be added to a gate electrode material that overlies the silicon or SiGe layer and can diffuse down toward the silicon or SiGe layer. The layer of silicon or SiGe may be formed to a thickness of about 5 to 120 nanometers and doped with a dopant, such as indium (In), for example, to deter the p-type dopant from passing through the silicon or SiGe layer. The dopant may have a peak concentration within the layer of silicon or SiGe near the interface of the silicon or SiGe layer with the underlying layer of gate dielectric material. Allowing the gate electrode to be doped with the p-type dopant (e.g., boron) facilitates forming the transistor with an associated work function having a desired value (e.g., coincident with a Fermi level of about 4.8 to about 5.6 electron volts).
摘要:
An integrated circuit device includes a substrate that has a source region and a drain region formed therein. A gate pattern is disposed on the substrate between the source region and the drain region. A lower pad layer is disposed on the source region and/or the drain region and comprises a same crystalline structure as the substrate. A conductive layer is disposed on the lower pad layer such that at least a portion of the conductive layer is disposed between the lower pad layer and the gate pattern. An insulating layer is disposed between the gate pattern and both the lower pad layer and the conductive layer, and also between the conductive layer and the substrate.
摘要:
A method and apparatus for providing a meshed power and signal bus system on an array type integrated circuit that minimizes the size of the circuit. In a departure from the art, through-holes for the mesh system are placed in the cell array, as well as the peripheral circuits. The power and signal buses of the mesh system run in both vertical and horizontal directions across the array such that all the vertical buses lie in one metal layer, and all the horizontal buses lie in another metal layer. The buses of one layer are connected to the appropriate bus(es) of the other layer using through-holes located in the array. Once connected, the buses extend to the appropriate sense amplifier drivers. The method and apparatus are facilitated by an improved subdecoder circuit implementing a hierarchical word line structure.
摘要:
A semiconductor device embodiment may include a plurality of cells each including a transistor therein, the cells also each including a first capacitor electrode therein, the first capacitor electrodes being positioned on an insulating layer, the first capacitor electrodes in adjacent cells being separated from each other. The device may also include partitioning members on the insulation layer, wherein the partitioning members are positioned to separate the cells from one another, and the partitioning members include an upper surface thereon. The device also may include an organic layer on the first capacitor electrodes between the partitioning members, wherein the organic layer is not positioned in contact with the upper surface of the partitioning members. The device may also include a continuous second capacitor electrode on the organic layer, the second capacitor electrode layer formed to be a common electrode for cells. In another aspect, the organic layer may be capable of a polarization inversion by exposure to an electric field. In another aspect, the partitioning members may include first and second layers, the first layer being formed from a material having an affinity for an organic solution used to form the organic layer, the second layer being formed from a material having a non-affinity for the organic solution used to form the organic layer.
摘要:
A technique for forming a TFT element over a substrate having flexibility typified by a flexible plastic film is tested. When a structure in which a light-resistant layer or a reflective layer is employed to prevent the damage to the delamination layer, it is difficult to fabricate a transmissive liquid crystal display device or a light emitting device which emits light downward. A substrate and a delamination film are separated by a physical means, or a mechanical means in a state where a metal film formed over a substrate, and a delamination layer comprising an oxide film including the metal and a film comprising silicon, which is formed over the metal film, are provided. Specifically, a TFT obtained by forming an oxide layer including the metal over a metal film; crystallizing the oxide layer by heat treatment; and performing delamination in a layer of the oxide layer or at both of the interface of the oxide layer is formed.
摘要:
A semiconductor device includes a semiconductor substrate having a recess therein. A gate insulator is disposed on the substrate in the recess. The device further includes a gate electrode including a first portion on the gate insulator in the recess and a second reduced-width portion extending from the first portion. A source/drain region is disposed in the substrate adjacent the recess. The recess may have a curved shape, e.g., may have hemispherical or ellipsoid shape. The source/drain region may include a lighter-doped portion adjoining the recess. Relate fabrication methods are also discussed.