Abstract:
An assembly suitable for identifying a code sequence of at least a portion of a biomolecule in a gel embodiment. The assembly comprises first means for migrating and separating a portion of a biomolecule in a gel; second means comprising a near-field probe for generating a super-resolution chemical analysis of a portion of a biomolecule; and, third means for correlating the super-resolution chemical analysis of the portion of the biomolecule with a broad spectral content of a referent biomolecule, for generating a code sequencing of the portion of the biomolecule.
Abstract:
This invention involves a fiber probe device and a method of making it. The probe includes a relatively thick upper cylindrical region, typically in the form of a solid right circular cylinder, terminating in a tapered region that terminates in a relatively thin lower cylindrical region (tip), typically also in the form of a solid right circular cylinder, the lower region having a width (diameter) in the approximate range 0.01 .mu.m to 150 .mu.m.
Abstract:
A near-field optical microscope and method of microscopy in which a probe including a flexible cantilever having a sharp tip is positioned in proximity to a sample. In one embodiment, a region of the sample is irradiated with light, and one or more portions of this region are caused to fluoresce. A quenching element is provided at the tip of the probe to quench the fluorescence of these portions within the region. The amount of quenching is determined while the sample is scanned to produce a high resolution image of the irradiated region of the sample. In another embodiment, the fluorescence imparted to one or more portions of the irradiated region is enhanced by the interaction of an optically active element disposed at the tip portion of the cantilever probe which provides for sharper images with greater signal-to-noise ratios. The near-field optical microscopes according to the present invention can also be used to measure the reflection/transmission or absorption characteristics from a sample region within a distance of one wavelength of light away from the sample surface. The microscopes also include means for producing a relative scanning motion between the sample and the probe such as by raster scanner or circular scanning, for example.
Abstract:
A large-nanostructure probe with optically guided macroscopic scanning is disclosed for high-resolution imaging and characterization of nanostructures. The invention contemplates the use of a course positioning system, which comprises one or more quadratic index fiber optic lenses in conjunction with an optical microscope. A magnifying probe is placed in close proximity to a sample under inspection. The fiber optic lenses of the coarse positioning system are used to noninvasively carry the image of a sample-to-probe junction to the optical microscope. The optical microscope further magnifies the image, allowing for precise positioning of the probe tip to within 1 .mu.m of a desired feature on the sample surface. For ease of viewing, the magnified image from the microscope may be displayed on a monitor using a charge coupled device ("CCD") camera, if so desired. Also disclosed is a long-range probing system wherein the probe tip may be one of a variety of measurement or probing apparatus. For example, a particularly effective configuration of the long-range probing system is one in which the optical viewing system of the present invention serves as part of a coarse approach system for a scanning tunneling microscope probe.
Abstract:
In order to control the movement of a single neutral atom or a small number of neutral atoms to trap the neutral atom or atoms at a distal end of an optical fiber probe, a laser light having a frequency which is slightly lower than a resonance frequency of the atom is made incident upon a proximal end of the optical fiber probe, and an evanescent light is generated from a sharpened distal end of the optical fiber probe whose tip is sharpened such that its radius of curvature is smaller than one wavelength of the laser light. The distal end of the optical fiber probe is brought close to the neutral atom or atoms to trap the neutral atom or atoms within an existing volume of the evanescent light. When the light frequency is changed to a value slightly higher than the resonance frequency of the atom, the trapped neutral atom or atoms are pushed out of the existing volume of the evanescent light. The crystal growth can be performed with a single atom level.
Abstract:
Systems, apparatuses, and methods for realizing a peak-force scattering scanning near-field optical microscopy (PF-SNOM). Conventional scattering-type microscopy (s-SNOM) techniques uses tapping mode operation and lock-in detections that do not provide direct tomographic information with explicit tip-sample distance. Using a peak force scattering-type scanning near-field optical microscopy with a combination of peak force tapping mode and time-gated light detection, PF-SNOM enables direct sectioning of vertical near-field signals from a sample surface for both three-dimensional near-field imaging and spectroscopic analysis. PF-SNOM also delivers a spatial resolution of 5 nm and can simultaneously measure mechanical and electrical properties together with optical near-field signals.
Abstract:
This invention involves measurement of optical properties of materials with sub-micron spatial resolution through infrared scattering scanning near field optical microscopy (s-SNOM). Specifically, the current invention provides substantial improvements over the prior art by achieving high signal to noise, high measurement speed and high accuracy of optical amplitude and phase. Additionally, it some embodiments, it eliminates the need for an in situ reference to calculate wavelength dependent spectra of optical phase, or absorption spectra. These goals are achieved via improved asymmetric interferometry where the near-field scattered light is interfered with a reference beam in an interferometer. The invention achieves dramatic improvements in background rejection by arranging a reference beam that is much more intense than the background scattered radiation. Combined with frequency selective demodulation techniques, the near-field scattered light can be efficiently and accurately discriminated from background scattered light. These goals are achieved via a range of improvements including a large dynamic range detector, careful control of relative beam intensities, and high bandwidth demodulation techniques. In other embodiments, phase and amplitude stability are improved with a novel s-SNOM configuration. In other embodiments an absorption spectrum may be obtained directly by comparing properties from a known and unknown region of a sample as a function of illumination center wavelength.
Abstract:
Systems and methods may be provided for measuring an infrared absorption of a sub micrometer region of a sample. An Infrared light source may illuminate a sample in a region that is interacting with the tip of a Scanning Probe Microscope (SPM), stimulating the sample in a way that produces measurable optical properties related to Infrared absorption of the sample region. A probe light source is directed at the region of the sample and SPM tip, and probe light emanating from the tip and sample region is collected. The collected light may be used to derive infrared absorption spectrum information of the sample region, possibly on a sub-micron scale.
Abstract:
An apparatus for manipulating surface near-field light resulting from light emitted from a light source that passes through a scattering layer is disclosed. Also, a method of finding a phase of incident light to cause constructive interference at a target spot using light scattering to manipulate the surface near-field.
Abstract:
An apparatus for manipulating surface near-field light resulting from light emitted from a light source that passes through a scattering layer is disclosed. Also, a method of finding a phase of incident light to cause constructive interference at a target spot using light scattering to manipulate the surface near-field.