摘要:
An electronic device has a camera assembly disposed in a housing of the electronic device that includes a light source assembly having a primary purpose for illuminating a subject during an imaging operation. The light source assembly includes a light source and a light window. A light block can be applied to lateral surfaces of the light window to prevent light passing through the light window from propagating along an outer surface of the housing, or other components of the electronic device. In some embodiments, the light block can include multiple layers having various reflective and absorptive characteristics.
摘要:
A method of partially imaging a substrate, for example glass, with a print pattern comprising layers of ceramic ink in substantially exact registration. The method relies on a mask ink layer defining the print pattern and differential thermal expulsion of ceramic ink medium during a heat fusing process between the areas outside the print pattern and within the print pattern. This results in pigment and glass frit forming a durable image material adhered to the substrate within the print pattern and non durable material outside the print pattern, enabling its removal outside the print pattern to leave the desired layers of ceramic ink within the print pattern in substantially exact registration.
摘要:
A coating method, coated article and coating are provided. The coated article includes a low temperature component, and a graphene coating formed from a graphene derivative applied over the low temperature component. The coating method includes providing a graphene derivative, providing a low temperature component, applying the graphene derivative over the low temperature component, and forming a graphene coating. The graphene coating reduces corrosion and fouling of the low temperature component. The coating includes a graphene derivative, and modified functional groups on the graphene derivative. The modified functional groups increase adherence of the coating on application to a low temperature component.
摘要:
A method of masking a component includes installing a flexible gasket over a portion of a component masking area leaving an unmasked area exposed. A backer is installed over the flexible gasket to compress the flexible gasket between the backer and the portion. The flexible gasket and the backer are secured to the component to provide an assembly. The assembly is deposited into a slurry with an abrasive media to polish the unmasked area, in one example. The flexible gasket and backer prevent abrasive media from reaching the masked area. The flexible gasket and backer can be removed from the component and reused on other similarly shaped components.
摘要:
Disclosed are methods for making conductive materials. The methods can be used to make transparent, opaque, or reflective electrodes by using the same materials and equipment but varying the processing conditions or amounts of materials used. The methods can include: (a) providing a substrate comprising a first surface and an opposite second surface, wherein micro- or nanostructures are disposed on at least a portion of the first surface, and wherein the first surface is not pre-conditioned to increase attachment between the micro- or nanostructures and the substrate; (b) applying heat to heat the substrate surface to a temperature that is greater than the glass transition temperature or the Vicat softening temperature of the substrate and less than the melting point of the substrate; (c) applying pressure such that the substrate and the micro- or nanostructures are pressed together; and (d) removing the pressure to obtain the conductive material.
摘要:
The method for producing a patterned layer of first material on a surface of a substrate comprises the following successive steps: arranging a particle on the surface of the substrate; depositing a resin by spin coating on the surface of the substrate so as to form the patterned layer of first material and a hole passing through the layer of first material and opening onto the particle; the material of the particle and the resin being chosen such that the particle exerts a repulsive interaction with respect to the resin.
摘要:
Nano-composites include a graphite material such as nanotubes or graphene sheets and a partial or complete coating of a polymer including sufficient π-conjugated moieties to interact with surfaces of the graphite material. The polymers may also include electropolymerizable or oxidatively polymerizable moieties so the films may be crosslinked. The films may be used to form layers on substrates or patterned layers on substrates.
摘要:
A method of coating a stent comprises contacting a first axial portion of a stent with a support element, such that a second axial portion does not contact the support element or any other support element, applying a coating material to the second axial portion, and inhibiting or preventing application of the coating material on the first axial portion. A shuttle sheath can be used to push the stent off the support element.
摘要:
The innovation process describes the process and results for fabrication of a magnetron sputter deposited fully dense electrolyte layer (8YSZ/GDC/LSGM) embedded in a high performance membrane electrolyte assembly (MEA) (Unit Cell) of Solid Oxide Fuel Cell. A single cell with airtight electrolyte layer (8YSZ/GDC/LSGM) is prepared via thin film technique of magnetron sputter deposition, combined with SOFC-MEA processing methods (such as tape casting, lamination, vacuum hot pressing, screen printing, spin coating, and plasma spray coating) and sintering optimization conditions. The gas permeability of the electrolyte layer is below 1×10−6 L/cm2/sec and the open circuit voltage/power density of the single cell performance test exceeds 1.0 V and 500 mW/cm2.
摘要翻译:创新过程描述了嵌入在固体氧化物燃料电池的高性能膜电解质组件(MEA)(Unit Cell)中的磁控溅射沉积的完全致密的电解质层(8YSZ / GDC / LSGM)的工艺和结果。 通过磁控溅射沉积的薄膜技术制备了具有气密电解质层(8YSZ / GDC / LSGM)的单电池,结合SOFC-MEA加工方法(如带铸,层压,真空热压,丝网印刷,旋涂, 和等离子体喷涂)和烧结优化条件。 电解质层的透气度低于1×10 -6 L / cm 2 / sec,单电池性能试验的开路电压/功率密度超过1.0V,500mW / cm 2。
摘要:
A mask for depositing a thin film and a thin film deposition method using the same are disclosed. The mask includes pattern bars disposed on a frame. The pattern bars are moveable and are position to form a deposition pattern. The mask includes a pattern modification mechanism configured to move the pattern pars to a plurality of positions to modify the deposition pattern.