Abstract:
A semiconductor device includes a first transistor formed on a substrate, the first transistor including a channel region positioned on the substrate; a second transistor formed on the substrate, the second transistor including a channel region positioned on the substrate; a high-k dielectric layer disposed on the channel region of the first transistor and the channel region of the second transistor; a first transistor metal gate positioned in contact with the high-k dielectric on the first transistor; a second transistor metal gate positioned in contact with the high-k dielectric on the second transistor; an oxygen absorbing barrier disposed in contact with the high-k dielectric between the first transistor and the second transistor; and a conductive electrode material disposed on the first transistor, the second transistor, and the oxygen absorbing barrier.
Abstract:
A method of fabricating advanced node field effect transistors using a replacement metal gate process. The method includes dopant a high-k dielectric directly or indirectly by using layers composed of multi-layer thin film stacks, or in other embodiments, by a single blocking layer. By taking advantage of unexpected etch selectivity of the multi-layer stack or the controlled etch process of a single layer stack, etch damage to the high-k may be avoided and work function metal thicknesses can be tightly controlled which in turn allows field effect transistors with low Tiny (inverse of gate capacitance) mismatch.
Abstract:
A method of fabricating advanced node field effect transistors using a replacement metal gate process. The method includes dopant a high-k dielectric directly or indirectly by using layers composed of multi-layer thin film stacks, or in other embodiments, by a single blocking layer. By taking advantage of unexpected etch selectivity of the multi-layer stack or the controlled etch process of a single layer stack, etch damage to the high-k may be avoided and work function metal thicknesses can be tightly controlled which in turn allows field effect transistors with low Tinv (inverse of gate capacitance) mismatch.
Abstract:
A method of fabricating advanced node field effect transistors using a replacement metal gate process. The method includes dopant a high-k dielectric directly or indirectly by using layers composed of multi-layer thin film stacks, or in other embodiments, by a single blocking layer. By taking advantage of unexpected etch selectivity of the multi-layer stack or the controlled etch process of a single layer stack, etch damage to the high-k may be avoided and work function metal thicknesses can be tightly controlled which in turn allows field effect transistors with low Tiny (inverse of gate capacitance) mismatch.
Abstract:
A method of manufacturing a semiconductor structure by forming an oxide layer above a substrate; optionally annealing the oxide layer to densify the oxide layer; forming a first sacrificial gate above the substrate; removing the first dummy gate; optionally annealing the first gate oxide layer; and forming a first replacement metal gate above the gate oxide layer. In some embodiments selective nitridation may be performed during the annealing step.
Abstract:
A semiconductor structure has a semiconductor substrate and an nFET and a pFET disposed upon the substrate. The pFET has a semiconductor SiGe channel region formed upon or within a surface of the semiconductor substrate and a gate dielectric having an oxide layer overlying the channel region and a high-k dielectric layer overlying the oxide layer. A gate electrode overlies the gate dielectric and has a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The metal layer scavenges oxygen from the substrate (nFET) and SiGe (pFET) interface with the oxide layer resulting in an effective reduction in Tinv and Vt of the pFET, while scaling Tinv and maintaining Vt for the nFET, resulting in the Vt of the pFET becoming closer to the Vt of a similarly constructed nFET with scaled Tinv values.
Abstract:
A first gate structure and a second gate structure are formed over a semiconductor material layer. The first gate structure includes a planar silicon-based gate dielectric, a planar high-k gate dielectric, a metallic nitride portion, and a first semiconductor material portion, and the second gate structure includes a silicon-based dielectric material portion and a second semiconductor material portion. After formation of gate spacers and a planarization dielectric layer, the second gate structure is replaced with a transient gate structure including a chemical oxide portion and a second high-k gate dielectric. A work-function metal layer and a conductive material portion can be formed in each gate electrode by replacement of semiconductor material portions. A gate electrode includes the planar silicon-based gate dielectric, the planar high-k gate dielectric, and a U-shaped high-k gate dielectric, and another gate electrode includes the chemical oxide portion and another U-shaped high-k gate dielectric.
Abstract:
A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
Abstract:
A method of forming a semiconductor device includes forming first and second semiconductor structures on a semiconductor substrate. The first semiconductor structure includes a first gate channel region having a first gate length, and the second semiconductor structure including a second gate channel region having a second gate length that is greater than the first gate length. The method further includes depositing a work function metal layer in each of a first gate void formed at the first gate channel region and a second gate void formed at the second gate channel region. The method further includes depositing a semiconductor masking layer on the work function metal layer, and simultaneously etching the silicon masking layer located at the first and second gate channel regions to re-expose the first and second gate voids. A low-resistive metal is deposited in the first and second gate voids to form low-resistive metal gate stacks.