Abstract:
Methods and devices for molecular analysis are disclosed, based on centrifugation. A centrifuge device has centrifuge tubes and elements to create electric fields. The shear forces applied to the cells inside a solution with biological molecules permit the performance of different analytic techniques, such as lysis and sample preparation for PCR.
Abstract:
The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
Abstract:
A microfluidic fluid separator for separating target components of a fluid by filtration is described. Methods for separating target components of a fluid by filtration and methods for processing blood on a large scale with the microfluidic fluid separator are provided.
Abstract:
A device and method are described in which the lifetime of a fluorescent species or fluorophores is detected in the absence of any optical filter. Based on the measured fluorescent lifetimes, molecules or compounds attached to a fluorophores such as small organic molecules, polymers, peptides, saccharides and nucleic acids can be identified or assayed.
Abstract:
A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
Abstract:
Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
Abstract:
This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
Abstract:
Methods and systems are described for fabricating thin hydrogel layers on biosensors by a drop-spin method, which includes placing a drop of the hydrogel on the electrode, spinning the wafer at high speed in a vacuum, and heating the wafer to cure. One and multilayer sensors can be fabricated in this way, by adding layers of hydrogel or metal.
Abstract:
Systems and methods for identifying the components of a long-chain molecule by making electrical measurements from fabricated nanoscale electrodes as the molecule moves down a narrow microfluidic channel. The channel can be along the surface of a chip, through a chip, or both.
Abstract:
Methods and devices including implantable micro-sensors used to detect tissue-dissolved inert gas and to detect microbubble formation to avoid Caisson disease are described. The disclosed methods and devices are based on measuring the refractive index changes in hydrophobic liquids after absorbing an inert gas such as nitrogen. The changes in the refractive index are based on implementing one of an interferometry, optical microcavity resonance shift, a photonic crystal resonance, a beam deflection, a resonance tuning or detuning, an amplitude change, or an intensity change method.