Abstract:
Methods to fabricate reaction cartridges for biological sample preparation and analysis are disclosed. A cartridge may have a reaction chamber and openings to allow fluids to enter the chamber. The cartridge may also have handles to facilitate its use. Such cartridges may be used for polymerase chain reaction.
Abstract:
Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
Abstract:
Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers.
Abstract:
Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers. The device may have a reaction cartridge with a reaction chamber to perform techniques such as polymerase chain reaction.
Abstract:
A non-transitory computer-readable storage medium storing executable instructions to cause a system to detect a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a measured change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
Abstract:
Methods and devices for biological sample preparation and analysis are disclosed. A device may have a linear or circular arrangement of containers, with a connecting structure such as a bar or disk. Fluidics channels between containers allow the performance of different techniques for sample preparation, such as lysing, washing and elution. Different functional elements, such as grinders or mixers, may be attached to the containers.
Abstract:
Structures and methods are described for optical detection of physical, chemical and/or biological samples. An optical detection structure may include a LED source, multiple filters and single or multiple sample areas. A detector may be used to record a fluorescence signal. The sample area may allow the introduction of removable cartridges.
Abstract:
Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
Abstract:
This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.
Abstract:
Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.