Abstract:
A non-transitory computer-readable storage medium storing executable instructions to cause a system to detect a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a measured change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
Abstract:
FRET-based analytes detection and related methods and systems are described where a pair of FRET labeled primers and/or oligonucleotides are used that are specific for target sequences located at a distance up to four time the Förster distance of the FRET chromophores presented on the FRET labeled primers and/or oligonucleotides one with respect to the other in one or more polynucleotide analyte; in particular the pair of FRET labeled primers and/or oligonucleotides is combined with a sample and subjected to one or more polynucleotide amplification reactions before measuring FRET signals from at least one FRET chromophore.
Abstract:
FRET-based analytes detection and related methods and systems are described where a pair of FRET labeled primers and/or oligonucleotides are used that are specific for target sequences located at a distance up to four time the Förster distance of the FRET chromophores presented on the FRET labeled primers and/or oligonucleotides one with respect to the other in one or more polynucleotide analyte; in particular the pair of FRET labeled primers and/or oligonucleotides is combined with a sample and subjected to one or more polynucleotide amplification reactions before measuring FRET signals from at least one FRET chromophore.
Abstract:
Novel methods to fabricate biological sensors and electronics are disclosed. A silicon-on-insulator wafer can be employed by etching a pattern of holes in the silicon layer, then a pattern of cavities in the insulating layer, and then sealing the top of the cavities. Further, n or p doped regions and metallic regions can be defined in the processed wafer, thereby enabling integration of biological sensing and electronic capabilities in the same wafer.
Abstract:
This disclosure provides methods, compositions and kits for the detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, compositions, and kits for detecting analytes, genetic variations, monitoring reaction process, and monitoring analyte-analyte interactions by measuring signals. In some examples, the presence of signals or changes in signals may be used to construct signal profiles which can be used to detect analytes.