摘要:
Forming a vertical MOS transistor or making another three-dimensional integrated circuit structure in a silicon wafer exposes planes having at least two different crystallographic orientations. Growing oxide on different crystal planes is inherently at different growth rates because the inter-atomic spacing is different in the different planes. Heating the silicon in a nitrogen-containing ambient to form a thin layer of nitride and then growing the oxide through the thin nitrided layer reduces the difference in oxide thickness to less than 1%.
摘要:
The present invention provides a plasma processing system comprising a remote plasma activation region for formation of active gas species, a transparent transfer tube coupled between the remote activation region and a semiconductor processing chamber, and a source of photo energy for maintaining activation of the active species during transfer from the remote plasma activation region to the processing chamber. The source of photo energy preferably includes an array of UV lamps. Additional UV lamps may also be used to further sustain active species and assist plasma processes by providing additional in-situ energy through a transparent window of the processing chamber. The system can be utilized for annealing.
摘要:
Method for controlling heat transferred to a workpiece (W) process region (30) from laser radiation (10) using a thermally induced reflectivity switch layer (60). A film stack (6) is formed having an absorber layer (50) atop the workpiece with a portion covering the process region. The absorber layer absorbs and converts laser radiation into heat. Reflective switch layer (60) is deposited atop the absorber layer. The reflective switch layer comprises one or more layers, e.g. thermal insulator and reflectivity transition layers. The reflective switch layer covering the process region has a temperature related to the temperature of the process region. Reflectivity of the switch layer changes from a low to a high reflectivity state at a critical temperature of the process region, limiting radiation absorbed by the absorber layer by reflecting incident radiation when switched. This limits the amount of heat transferred to the process region from the absorber layer.
摘要:
A method for forming an ultra-shallow junction by boron plasma doping is disclosed. A substrate is placed in a pulse type electric field. A flowing carrying gas drives boron ions in a channel above the substrate, and then a negative pulse type voltage is applied so that the boron ions may uniformly enter into the substrate. Then a rapid annealing process is performed so as to be formed with an ultra-shallow junction on the substrate. In the present invention, by the boron plasma doping, an ultra-shallow junction is provided on a surface of the substrate. Therefore, after the next thermal process, the property of the element can be retained. A lower depth junction is acquired, and the diffusion in the horizontal direction is suppressed.
摘要:
A method for forming an ultra-shallow junction using laser annealing wherein an amorphous carbon layer is used as an energy absorber layer comprises the steps of preparing a silicon substrate having isolation layers; forming a gate having a stacked structure of a gate insulating layer, a polysilicon layer and a metal layer on the silicon substrate; forming a sacrificial spacer on the sidewalls of the gate; forming source and drain regions on the silicon substrate regions at both sides of the gate including on the sacrificial spacer; removing the sacrificial spacer; doping impurities to form source/drain extension doping layers on the silicon substrate regions at both sides of the gate; depositing sequentially a reaction preventing layer and an amorphous carbon layer as a laser absorber layer on the resulting structure; forming source/drain extension doping layers on inner sides of the source and drain regions by performing laser annealing in an atmosphere of inert gas or under vacuum; and removing the amorphous carbon layer.
摘要:
An ion implantation apparatus and method. The apparatus has a vacuum chamber and an ion beam generator to generate an ion beam in the vacuum chamber. The apparatus also has an implant wheel (10), in the vacuum chamber, having a plurality of circumferentially distributed substrate holding positions. Each of the substrate holding positions comprises a substrate holder (17), which includes an elastomer overlying the substrate holder (17) and a thermal insulating material (71) (e.g., quartz, silicon, ceramics, and other substantially non-compliant materials) overlying the elastomer (72). The present thermal insulating material increases a temperature of a substrate as it is implanted.
摘要:
A novel method of using lasers for generating driving energy for activating P-type compound semiconductor films and reducing the resistivity thereof. The P-type compound semiconductor films are made from III-V nitrides or II-VI group compounds doped with P-type impurity. The present invention can be carried out in the ambience of atmosphere rather than in the ambience of nitrogen gas. In addition, adjusting the power and focusing distance of a laser source, and the power density can change the time required by the activating process.
摘要:
A process for manufacturing polished-like first-grade semiconductor wafers is disclosed. The process greatly simplifies the amount of polishing required while producing high quality semiconductor wafers. After a semiconductor wafer is sliced from a single crystal ingot, lapped and ground, the wafer is subjected to a double side fine grinding operation, a micro-etching operation, and an annealing operation to significantly improve the quality of the front surface. To complete to process the semiconductor wafer is flash polished to impart a specular finish on the front surface. In accordance with the present invention the semiconductor wafers may also be produced having a denuded zone capable of internal gettering.
摘要:
Disclosed is a plasma process apparatus which permits generating microwaves and a magnetic field so as to bring about electron cyclotron resonance and, thus, to generate a plasma which is applied to a semiconductor wafer, comprising microwave generating means for generating said microwaves, microwave transmitting means for transmitting the microwaves, a process chamber having said semiconductor wafer arranged therein, the microwaves being introduced into said process chamber through said microwave transmitting means, process gas supply means for supplying a process gas into said process chamber, and magnetic field generating means for generating a magnetic field within the process chamber. The frequency of the microwave falls within a range between a lower limit of a cutoff frequency determined by the inner diameter of the process chamber and an upper limit of a maximum frequency at which a standing wave of the microwave does not occur on the surface of the object.
摘要:
A silicon wafer is heated from an initial pre-heating temperature (T0) up to a first annealing temperature (T1) by a rapid heating up step using an IR lamp. A first annealing is executed at the first annealing temperature (T1). Successively, while the silicon wafer is maintained at a second annealing temperature (T2) lower than the first annealing temperature (T1), a second annealing step is executed by a resistive heating furnace. A thermal oxidation can be executed as the second annealing step. To do so, an equipment for manufacturing a semiconductor device in the present invention is provided with: a heating device having an IR lamp and a resistive heater; an annealing tube having on a surface thereof a plurality of concave portions in such a way that each bottom approaches a central line; a resistive heater wrapped around this annealing tube; and an IR lamp movably inserted into and pulled out from the concave portion from the external. A IR lamp moving unit for moving the IR lamp is connected to the IR lamp. A wafer loader for mounting a plurality of wafers can be carried into and from the annealing tube. The first annealing step using the IR lamp at the rapid heating rate and successively the second annealing step using the resistive heater are performed on the plurality of wafers without performing a cooling step down to the room temperature. Accordingly, it is possible to effectively recover the damage induced by ion implantation and the like and also possible to suppress the enhanced diffusion of impurity resulting from the,damage to thereby improve the controllability of impurity distribution profile.