Abstract:
A vehicle floor includes a unitary, one-piece panel. The panel is formed with an integral channel for routing a vehicle distribution system conduit therewithin. The panel may include an inner panel portion, an outer panel portion, integral rocker panel portions, front, rear and trunk floor portions. A method is provided for manufacturing a vehicle floor, the method including forming such a panel.
Abstract:
A method is provided for providing vehicle reconfigurability. The method includes maintaining an inventory containing vehicle body pods each having a substantially identical interface at which each of the body pods is connectable to a chassis such that the body pods are interchangeable on the chassis. The body pods include at least one body pod characterized by a first body pod style and at least one body pod characterized by a second body pod style. The method also includes granting possession to a customer of a vehicle body pod from the inventory independent of a chassis.
Abstract:
A mobile chassis for vehicle body interchangeability has a waste heat rejection system packaged in a rolling platform. The system is connected to a powertrain cooling loop for waste heat circulation. The cooling loop includes cooling fin heat exchangers on the sides of the rolling platform and another heat exchanger in the HVAC system for utilizing otherwise waste heat in the air conditioning of each vehicle body being interchanged.
Abstract:
A vehicle bumper is formed using fluid pressure such that the bumper is characterized by a curvature. The bumper preferably includes an upper bumper bar portion and a lower bumper bar portion that are interconnected. The bumper is also preferably connectable to a pair of upper rails and a pair of lower rails so that an impact load is distributable between the upper rails and the lower rails. The bumper preferably includes an inner panel and an outer panel. A method of forming a bumper is also provided. The method includes subjecting a metal blank to fluid pressure to form a bumper having a shape characterized by a curvature.
Abstract:
Various body configurations capitalize upon the interchangeability of vehicle bodies on a flat rolling chassis. The ability to interchange vehicle bodies and exchange modular interior components enables substantial freedom and variation in the types of automobile, trucks, heavy equipment, machinery, RV bodies, etc. that can be interchanged on a rolling chassis. Various seating arrangements may be provided as well as enhanced space utilization, and different types of interior and exterior environments, aesthetics and functionality, including sound, lighting, and other technology enhancements may be provided on a body. Methods and structures facilitate the exchange of modular body components, such as via a removable body floor.
Abstract:
A body and frame assembly for a vehicle includes a one-piece inner member mated with a one-piece outer member, the inner member and the outer member defining door openings at opposing sides of the vehicle. The inner member and the outer member may each include a roof panel portion and two side frame portions. A method of assembling a vehicle that includes the body and frame assembly includes forming each of the inner and outer members by quick plastic forming, super plastic forming or hydroforming. Preferably, the inner member and the outer member are each formed from a separate single sheet of aluminum.
Abstract:
A vehicle includes a steering system, suspension system, braking system, and energy conversion system, wherein at least one of these systems is reprogrammable such that the vehicle's ride, response, or handling is selectively variable. The systems may be programmed automatically when a body is mated to a chassis to provide the desired performance characteristics. The invention enables increased vehicle functionality for vehicle users, retailers and manufacturers.
Abstract:
An electrical distribution system for a vehicle having electrical devices includes at least one junction box and a plurality of terminals interconnected by at least one conductive path. The electrical distribution system operatively interconnects the electrical devices when the electrical devices are appropriately connected to the electrical distribution system via the terminals. A method for advantageously using an electrical distribution system having sufficient terminals and sufficient conductive paths to accommodate a plurality of vehicle electrical device combinations is also provided.
Abstract:
A chassis subassembly module having a portion of a chassis structural frame and vehicular componentry facilitates the assembly of a chassis having systems responsive to non-mechanical control signals and a simplified body-attachment interface. A method of employing chassis subassembly modules to assemble chassis is also provided.
Abstract:
A body panel includes a hood portion configured to extend over and across a vehicle front compartment, and two fender portions. A unitary, one-piece inner panel and a unitary, one-piece outer panel cooperate to define the hood portion and the two fender portions. The inner panel and the outer panel comprise a substantial portion of a vehicle body front end, replacing the multitude of inner panels, outer panels, and reinforcements in a prior art vehicle body. The body panel preferably functions as a load-bearing vehicle frame portion, reducing or eliminating prior art vehicle frame components. A method of manufacturing the body panel includes forming an inner panel and an outer panel using superplastic forming, quick plastic forming, or sheet hydroforming, and connecting the inner panel and the outer panel.