摘要:
This invention is directed to a pressure regulating device including a subassembly of a pressure regulating device, which subassembly receives predominantly electric components, such as coils of electromagnetically actuatable valves. The subassembly has a component that contains coils and is encompassed by magnetic-flux-conducting, U-shaped iron parts, with play on all sides. When the first subassembly is brought together with a second subassembly, which contains a hydraulic part of the valves, valve domes reach through the iron parts and the coils. The iron parts are aligned and supported with spring force against a mounting surface of both subassemblies.
摘要:
A valve block (10) includes fluid passages (12), valves (14), and connections (30,32,34) for fluid operated devices. Electromagnets (36) are attached to the valve block (10) for actuating the valves (14). A hood (40) covering the electromagnets (36) is placed on the valve block (10). An external plug group (42) is arranged at the hood (40) and comprises plugs (44) which are accessible from outside and serve for connection to sensors and the like. A second plug group (46) including plugs (48) is arranged within the hood (40), the plugs thereof being connected to the plugs (44) of the external plug group (42). A third plug group (50) including plugs (52) is arranged at the valve block (10), the plugs thereof being adapted for connection to the plugs (48) of the second plug group (46) by donning of the hood (40). The electromagnets (36) are connected to the plugs (52) of the third plug group (50) by a conductor arrangement (56). The hood (40) encloses a space (53) in which electronic components are received.
摘要:
Disclosed are a fluid control system and method for controlling delivery of two variable pressure fluids to maintain a pressure bias between the two fluids within an end use device. The system employs an actively controlled vent valve which can be integrated into a fluid control module in preferred embodiments and is actuated to an open position to decrease fluid pressure in a first fluid supply line when a determined pressure differential reversal exceeds a predetermined threshold pressure differential reversal. The disclosed system is particularly useful in a high pressure direct injection (HPDI) multi-fueled engine system where the first fluid is a gaseous fuel and the second fluid is a liquid fuel. The fluid control system and method of controlling it provide for improved control of venting along with protecting system components from high back pressure and cross contamination of fluids.
摘要:
An on-board spool-able re-useable containment boom for a waterborne vessel that lies substantially flat and capable of being spooled when deflated and floats in the proper orientation when inflated, that has spool-able re-inflatable float sections which are sequentially inflated during deployment and sequentially deflated during recovery, that can be repeatedly deployed and recovered for the purposes of training and testing, and that can be deployed immediately upon occurrence of an oil spill from a waterborne vessel because of its on-board location and its rapid deployment, and a control system for proper inflation and deflation of spool-able re-useable containment boom during deployment and recovery.
摘要:
A pressure controller for use in operating parallel reactors, the pressure controller including a reference pressure controller, the reference pressure controller including: a first restrictor channel, a second restrictor channel, a fluid passage, which fluid passage extends between the outlet of the first restrictor channel and the inlet of the second restrictor channel, a pressure control fluid source being adapted to provide a flow of pressure control fluid, having an entrance pressure at the inlet of the first restrictor channel and an exit pressure at the outlet of the second restrictor channel, the flow of pressure control fluid experiencing a first pressure drop Δρ1 over the first restrictor channel and a second pressure drop Δρ2 over the second restrictor channel, a connector connecting the fluid passage to the control chamber, the pressure control fluid at the connector having an intermediate pressure, the intermediate pressure being determined by the ratio between the first pressure drop Δρ1 and the second pressure drop Δρ2, a controllable thermal device, the thermal device being adapted to heat and/or cool the first restrictor channel and/or the second restrictor channel, therewith influencing the ratio between the first pressure drop Δρ1 and the second pressure drop Δρ2.
摘要:
An on-board re-inflatable containment boom for a waterborne vessel that lies substantially flat and capable of being spooled when deflated and floats in the proper orientation when inflated, that has re-inflatable float sections which are sequentially inflated during deployment and sequentially deflated during recovery, that can be repeatedly deployed and recovered for the purposes of training and testing, and that can be deployed immediately upon occurrence of an oil spill from a waterborne vessel because of its on-board location and its rapid deployment, and a control system for proper inflation and deflation of re-inflatable containment boom during deployment and recovery.
摘要:
A pressure sensor is integrated into an integrated circuit fabrication and packaging flow. In one example, a releasable layer is formed over a removable core. A first dielectric layer is formed. A metal layer is patterned to form conductive metal paths and to form a diaphragm with the metal. A second dielectric layer is formed over the metal layer and the diaphragm. A second metal layer is formed to connect with formed vias and to form a metal mesh layer over the diaphragm. The first dielectric layer is etched under the diaphragm to form a cavity and the cavity is covered to form a chamber adjoining the diaphragm.
摘要:
A pressure sensor is integrated into an integrated circuit fabrication and packaging flow. In one example, a releasable layer is formed over a removable core. A first dielectric layer is formed. A metal layer is patterned to form conductive metal paths and to form a diaphragm with the metal. A second dielectric layer is formed over the metal layer and the diaphragm. A second metal layer is formed to connect with formed vias and to form a metal mesh layer over the diaphragm. The first dielectric layer is etched under the diaphragm to form a cavity and the cavity is covered to form a chamber adjoining the diaphragm.