Abstract:
A method of containing a spill in an aqueous environment, comprises the steps of: placing a polymeric pipe under the surface level of the aqueous environment in the vicinity of a site of potential spillage; and raising the pipe from under the surface level to a containment level; wherein the pipe forms, when raised, at least a partial boundary around the spill for containing the spill.
Abstract:
A subsea blooming system and method of deploying a subsea blooming system includes a first buoyant module, a first line extending downwardly from the first buoyant module, a first ballast module affixed adjacent an end of the first line, at least one boom translatably connected to the first line, and a variable buoyant module cooperative with the boom. The first buoyant module is positively and non-variably buoyant. The first ballast module is negatively and non-variably buoyant. The boom includes a plurality of booms that are connected in end-to-end relationship in a desired array.
Abstract:
An on-board re-inflatable containment boom for a waterborne vessel that lies substantially flat and capable of being spooled when deflated and floats in the proper orientation when inflated, that has re-inflatable float sections which are sequentially inflated during deployment and sequentially deflated during recovery, that can be repeatedly deployed and recovered for the purposes of training and testing, and that can be deployed immediately upon occurrence of an oil spill from a waterborne vessel because of its on-board location and its rapid deployment, and a control system for proper inflation and deflation of re-inflatable containment boom during deployment and recovery.
Abstract:
An on-board re-inflatable containment boom system for a waterborne vessel providing an on-board re-inflatable containment boom that lies substantially flat and capable of being spooled when deflated and floats in the proper orientation when inflated, that has re-inflatable float sections which are sequentially inflated during deployment and sequentially deflated during recovery, that can be repeatedly deployed and recovered for the purposes of training and testing, and that can be deployed immediately upon occurrence of an oil spill from a waterborne vessel because of its on-board location and its rapid deployment, providing controlled inflation and deflation during deployment and recovery, and a method for containment of an oil spill from a waterborne vessel using an on-board re-inflatable containment boom system.
Abstract:
An on-board re-inflatable containment boom for a waterborne vessel that lies substantially flat and capable of being spooled when deflated and floats in the proper orientation when inflated, that has re-inflatable float sections which are sequentially inflated during deployment and sequentially deflated during recovery, that can be repeatedly deployed and recovered for the purposes of training and testing, and that can be deployed immediately upon occurrence of an oil spill from a waterborne vessel because of its on-board location and its rapid deployment, and a control system for proper inflation and deflation of re-inflatable containment boom during deployment and recovery.
Abstract:
An on-board re-inflatable containment boom for a waterborne vessel that lies substantially flat and capable of being spooled when deflated and floats in the proper orientation when inflated, that has re-inflatable float sections which are sequentially inflated during deployment and sequentially deflated during recovery, that can be repeatedly deployed and recovered for the purposes of training and testing, and that can be deployed immediately upon occurrence of an oil spill from a waterborne vessel because of its on-board location and its rapid deployment, and a control system for proper inflation and deflation of re-inflatable containment boom during deployment and recovery.
Abstract:
An oil containment system aboard a vessel which includes a pneumatic system to provide power to a winch and reel assembly containing boom whereby the pneumatic supply is capable of simultaneously powering the winch-reel assembly for boom deployment through inflatable gas fed to a pneumatic motor while also inflating the boom. The inflation of the boom is accomplished by diverting, all or any portion thereof, the inflatable gas from a pneumatic supply through a hose that runs concurrently on the outside of the boom wherein appropriate rates of inflatable gas pressure are allowed to flow through the hose to feed through a valve and hose assembly that connects the inflatable gas supply of the hose to the inflatable gas containment system of the boom. The pneumatic supply originates from a single pneumatic system powering both the winch and reel assembly as well as associated brake and feeding inflatable gas pressure to the inflation hose running concurrently with the boom. The system may be manufactured in a form such that it is compact enough to be installed in, or rapidly transported to, any area or place or vessel where there is likelihood of a discharge of floating material, such as hydrocarbons, floating on a liquid surface. The present invention may also be operated through the use of pneumatic control without the benefit of electric power making it particularly useful for applications in remote areas or during a disaster when electrical power is not readily available.
Abstract:
An offshore atoll system includes a continuous barrier, the continuous barrier having one or more modular sections coupled together, wherein each of the one or more modular sections have at least one concave surface positioned at a sea surface. The continuous barrier also includes one or more thrusters disposed along a length thereof. The continuous barrier is provided to reduce a magnitude of incoming waves on at least one side of the continuous barrier.
Abstract:
An oil containment system aboard a vessel which includes a pneumatic system to provide power to a winch and reel assembly containing boom whereby the pneumatic supply is capable of simultaneously powering the winch-reel assembly for boom deployment through inflatable gas fed to a pneumatic motor while also inflating the boom. The system would be utilized to confine a discharge of a floating material such as hydrocarbons floating on the surface from a vessel or structure.
Abstract:
A containment system for recovering hydrocarbon fluid from a leaking device comprising a dome sealed to the seafloor around the leaking device and forming a cavity for accumulating hydrocarbon fluid. The dome comprises an upper output opening for extracting the hydrocarbon fluid, and an over pressure valve for extracting fluid out from the cavity to the environment if pressure inside the cavity is too high.