Abstract:
A probe for cardiac diagnosis and/or treatment has a catheter tube. The distal end of the catheter tube carries first and second electrode elements. The probe includes a mechanism for steering the first electrode element relative to the second electrode element so that the user can move the first electrode element into and out of contact with endocardial tissue without disturbing the contact of the second electrode element with endocardial tissue, even through the two electrode elements are carried on a common catheter tube. The distal end can carry a three dimensional structure having an open interior area. One of electrode elements can be steered through the open interior area of the structure. Electrode elements on the exterior of the structure can be used for surface mapping, while the electrode element inside the structure is steered to ablate tissue.
Abstract:
A method and an apparatus is disclosed for delivering controlled heat to perform ablation to treat the benign prosthetic hypertrophy or hyperplasia (BPH). According to the method and the apparatus, the energy is transferred directly into the tissue mass which is to be treated in such a manner as to provide tissue ablation without damage to surrounding tissues. Automatic shut-off occurs when any one of a number of surrounding areas to include the urethra or surrounding mass or the adjacent organs exceed predetermined safe temperature limits. The constant application of the radio frequency energy over a maintained determined time provides a safe procedure which avoids electrosurgical and other invasive operations while providing fast relief to BPH with a short recovery time. The procedure may be accomplished in a doctor's office without the need for hospitalization or surgery.
Abstract:
An ablation apparatus has a balloon that is inserted into an organ of a body and ablates all or a selected portion of the inner layer of the organ. Electrolytic solution fills the balloon, and the balloon includes a plurality of apertures from which electrolytic solution flows from the balloon. The flow rate of electrolytic solution is dependent on the pressure applied to the balloon by the electrolytic solution. A conforming member, with a conductive surface and a back side, is made of a material that substantially conforms, to a shape of the inner layer of the organ and delivers the electrolytic solution and RF energy through the conductive surface to the inner layer. Advantageously, difficult to access areas are reached with the inclusion of the conforming member. Optionally positioned between the conforming member and the balloon is a porous membrane. A printed circuit is printed in or on the conforming member and delivers RF energy to selected sections of the inner layer. The printed circuit provides for the monitoring of impedance, temperature and circuit continuity. Additionally, the printed circuit can be multiplexed.
Abstract:
A method for debulking the tongue provides an ablation apparatus including a source of electromagnetic energy and one or more electromagnetic energy delivery electrodes coupled to the electromagnetic energy source. At least one electrode is advanced into an interior of the tongue. Electromagnetic energy is delivered from the electrode to debulk an interior section of the tongue without damaging a hypoglossal nerve. The electrode is then retracted from the interior of the tongue.
Abstract:
A transurethral needle ablation device for use with the human hand for radio frequency ablation of a target volume in the tissue of a prostate of a human male having a bladder with a base and a penis with a urethra therein formed by a urethral wall extending into the base of the bladder along a longitudinal axis with the tissue of the prostate surrounding the urethra near the base of the bladder. The device comprises a bridge having proximal and distal extremities and having a passage therein extending from the proximal extremity to the distal extremity. A sheath having proximal and distal extremities is secured to the bridge and has a passageway therein in communication with the passage in the bridge. The sheath is sized so that it can enter the urethra and has a length so that when its distal extremity is in the vicinity of the prostate, the proximal extremity is outside the urethra. A disposable needle assembly having proximal and distal extremities is removably mounted in the passage in the bridge and extends through the passageway in the sheath. The needle assembly includes at least one needle electrode and an insulating sleeve coaxially disposed on the needle electrode. The proximal extremity of the needle assembly is caused to be moved sideways at an angle with respect to the longitudinal axis to face the urethral wall. A mechanism is carried by the proximal extremity of the needle assembly and the bridge for causing advancement of the needle electrode and the insulation sleeve thereon through the urethral wall and into the target volume in the tissue of the prostate with a portion of the electrode being free of the insulation but with the insulation extending through the urethral wall.
Abstract:
A transurethral needle ablation device for the treatment of the prostate of a human male using radio frequency energy wall comprising a sheath having a lumen extending therethrough. A guide tube assembly is slidably mounted in the lumen in the sheath and having a lumen extending therethrough. A needle electrode is slidably mounted in the lumen in the guide tube assembly. An insulating sheath is disposed about the needle electrode so that the distal extremity of the needle electrode is exposed. A handle adapted to be gripped by the human hand is mounted on the proximal extremity of the sheath. Levers are carried by the handle for causing bending of the distal extremity of the guide tube assembly at an angle with respect to its longitudinal axis whereby the lumen in the guide tube assembly can be directed so that it faces the urethral wall. A control is carried by the handle and coupled to the needle electrode and the insulating sleeve for advancing and retracting the needle electrode with respect to the guide tube assembly whereby when the sheath is positioned in the urethra with its distal extremity in the vicinity of the prostate, the needle electrode can be advanced through the urethral wall and into the tissue of the prostate to permit the application of radio frequency energy to the tissue of the prostate surrounding the needle electrode to form a lesion in the prostate.
Abstract:
A method of medical treatment of the prostate provides an ablation apparatus. The ablation apparatus includes a cannula, an electrode at least partially positioned in the cannula, and an insulation sleeve positioned in a surrounding relationship to at least a portion of the electrode. A distal end of the cannula is positioned in a rectum of a patient. The distal end of the cannula is advanced through a rectal wall of the rectum. A distal end of the electrode if advanced from the cannula into the prostate. Electromagnetic energy is delivered from the electrode to the prostate and an ablation zone is created in the prostate.
Abstract:
An apparatus for ablating at least a portion of an interior of a body structure includes a catheter with a catheter interior and a port formed in a body structure of the catheter. An ablation energy delivery device is at least partially positioned in the catheter interior. The ablation energy delivery device is configured to be advanced through the port into the interior of the body structure to a selected tissue site and deliver an ablation energy to the selected site. The ablation energy delivery device is configured to be coupled to an ablation energy source. A sensor is coupled to the ablation energy source. The sensor is positionable in the interior of the body structure and measures an impedance of at least a portion of the selected tissue site. A conductive medium introduction member is coupled to a source of a conductive medium and the catheter. A feedback control means is coupled to the sensor and the conductive medium source. The feedback control means provides a controlled delivery of the conductive medium to the selected tissue site in response to a level of measured impedance. A cable coupled to the ablation energy delivery device.
Abstract:
A transurethral needle ablation device for use with the human hand for radio frequency ablation of a target volume in the tissue of a prostate of a human male having a bladder with a base and a penis with a urethra therein formed by a urethral wall extending into the base of the bladder along a longitudinal axis with the tissue of the prostate surrounding the urethra near the base of the bladder. The device comprises a bridge having proximal and distal extremities and having a passage therein extending from the proximal extremity to the distal extremity. A sheath having proximal and distal extremities is secured to the bridge and has a passageway therein in communication with the passage in the bridge. The sheath is sized so that it can enter the urethra and has a length so that when its distal extremity is in the vicinity of the prostate, the proximal extremity is outside the urethra. A disposable needle assembly having proximal and distal extremities is removably mounted in the passage in the bridge and extends through the passageway in the sheath. The needle assembly includes at least one needle electrode and an insulating sleeve coaxially disposed on the needle electrode. The proximal extremity of the needle assembly is caused to be moved sideways at an angle with respect to the longitudinal axis to face the urethral wall. A mechanism is carried by the proximal extremity of the needle assembly and the bridge for causing advancement of the needle electrode and the insulation sleeve thereon through the urethral wall and into the target volume in the tissue of the prostate with a portion of the electrode being free of the insulation but with the insulation extending through the urethral wall.
Abstract:
An apparatus for treating air way obstructions, includes a first arm including a proximal end and a distal end, the first arm distal end is inserted into the throat and positioned adjacent to a back surface of the tongue. A second arm has a proximal end and a distal end. The second arm is positioned under the jaw. A coupling member couples the first arm with the second arm, permitting rotational movement of each arm about a longitudinal axis of the coupling member. A plurality of RF electrodes are positioned in the first arm. The plurality of RF electrodes are advanced into the back of the tongue and retracted out of the tongue and into the first arm, ablating a selected area of the back of the tongue.