Abstract:
The present invention proposes a strip plate structure and a method of manufacturing the same. In one embodiment, the strip plate structure comprises a strip plate array comprising a plurality of strip plates arranged in a predetermined direction with spacing, each of said strip plates including a first surface facing one side direction of the strip plate structure and a second surface facing an substantially opposite side direction of the strip plate structure; and a plurality of strip sheets, each strip sheet alternately abutting either the first surfaces or the second surfaces of two adjacent strip plates.
Abstract:
A semiconductor structure and a method for fabricating the semiconductor structure include or provide a field effect device that includes a spacer shaped contact via. The spacer shaped contact via comprises a spacer shaped annular contact via that is located surrounding and separated from an annular spacer shaped gate electrode at the center of which may be located a non-annular and non-spacer shaped second contact via. The annular gate electrode as well as the annular contact via and the non-annular contact via may be formed sequentially in a self-aligned fashion while using a single sacrificial mandrel layer.
Abstract:
A shallow trench isolation structure containing a first shallow trench isolation portion comprising the first shallow trench material and a second shallow trench isolation portion comprising the second shallow trench material is provided. A first biaxial stress on at least one first active area and a second bidirectional stress on at least one second active area are manipulated separately to enhance charge carrier mobility in middle portions of the at least one first and second active areas by selection of the first and second shallow trench materials as well as adjusting the type of the shallow trench isolation material that each portion of the at least one first active area and the at least one second active area laterally abut.
Abstract:
The present application discloses a semiconductor device and a method for forming the same. The method comprises: providing a first semiconductor layer and forming a first STI in the first semiconductor layer; determining a selected region in the first semiconductor layer, and making a portion of the first semiconductor layer in the selected region recessed; and in the selected region, epitaxially growing a second semiconductor layer on the first semiconductor layer, wherein the material of the second semiconductor layer is different from that of the first semiconductor layer. According to the present invention, a structure with a second semiconductor layer selectively epitaxially grown and embedded in the first semiconductor layer can be formed by a simple process, and defects generated during the epitaxial growth process can be further reduced.
Abstract:
The gate electrode of a metal oxide semiconductor field effect transistor (MOSFET) comprises a source side gate electrode and a drain side gate electrode that abut each other near the middle of the channel. In one embodiment, the source side gate electrode comprises a silicon oxide based gate dielectric and the drain side gate electrode comprises a high-k gate dielectric. The source side gate electrode provides high carrier mobility, while the drain side gate electrode provides good short channel effect and reduced gate leakage. In another embodiment, the source gate electrode and drain gate electrode comprises different high-k gate dielectric stacks and different gate conductor materials, wherein the source side gate electrode has a first work function a quarter band gap away from a band gap edge and the drain side gate electrode has a second work function near the band gap edge.
Abstract:
The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure according to the present invention adjusts a threshold voltage with a common contact, which has a portion outside the source or drain region extending to the back-gate region and provides an electrical contact of the source or drain region and the back-gate region, which leads to a simple manufacturing process, an increased integration level and a lowered manufacture cost. Moreover, the asymmetric design of the back-gate structure further increases the threshold voltage and improves the performance of the device.
Abstract:
An ultra-thin body transistor and a method for manufacturing an ultra-thin body transistor are disclosed. The ultra-thin body transistor comprises: a semiconductor substrate; a gate structure on the semiconductor substrate; and a source region and a drain region in the semiconductor substrate and on either side of the gate structure; in which the gate structure comprises a gate dielectric layer, a gate embedded in the gate dielectric layer, and a spacer on both sides of the gate; the ultra-thin body transistor further comprises: a body region and a buried insulated region located sequentially under the gate structure and in a well region; two ends of the body region and the buried insulated region are connected with the source region and the drain region respectively; and the body region is isolated from other regions in the well region by the buried insulated region under the body region. The ultra-thin body transistor has a thinner body region, which decreases the short channel effect. In the method for manufacturing an ultra-thin body transistor together with the replacement-gate process, the forming of the buried insulated region is self-aligned with the gate, which reduces the parasitic resistance under the spacer.
Abstract:
The present application discloses a semiconductor device comprising a fin of semiconductive material formed from a semiconductor layer over a semiconductor substrate and having two opposing sides perpendicular to the main surface of the semiconductor substrate; a source region and a drain region provided in the semiconductor substrate adjacent to two ends of the fin and being bridged by the fin; a channel region provided at the central portion of the fin; and a stack of gate dielectric and gate conductor provided at one side of the fin, where the gate conductor is isolated from the channel region by the gate dielectric, and wherein the stack of gate dielectric and gate conductor extends away from the one side of the fin in a direction parallel to the main surface of the semiconductor substrate, and insulated from the semiconductor substrate by an insulating layer. The semiconductor device has an improved short channel effect and a reduced parasitic capacitance and resistance, which contributes to an improved electrical property and facilitates scaling down of the transistor.
Abstract:
The present invention discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises a semiconductor substrate, a local interconnect structure connected to the semiconductor substrate, and at least one via stack structure electrically connected to the local interconnect structure, wherein the at least one via stack structure comprises a via having an upper via and a lower via, the width of the upper via being greater than that of the lower via; a via spacer formed closely adjacent to the inner walls of the lower via; an insulation layer covering the surfaces of the via and the via spacer; a conductive plug formed within the space surrounded by the insulation layer, and electrically connected to the local interconnect structure. The present invention is applicable to manufacture of a via stack in the filed of manufacturing semiconductor.
Abstract:
There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein an insulation material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and a bulk semiconductor material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages such as low cost and high heat transfer.