Abstract:
A fixing member, a device for mounting a circuit board, and a display apparatus so as to conveniently and firmly fix a PCB on the back plate of the back-light module are disclosed. The fixing member includes a supporting plate, a first clamping part fixedly arranged on an upper surface of the supporting plate, and a second clamping part facing the first clamping part. The first clamping part and the supporting plate form a first U-shape clamping groove. The second clamping part and the supporting plate form a second U-shape clamping groove. An opening of the first U-shape clamping groove faces an opening of the second U-shape clamping groove. The fixing member is used for fixing the circuit board on the back plate.
Abstract:
Embodiments of the present disclosure provide an array substrate and a display device. The array substrate includes a plurality of gate lines and a plurality of data lines, the plurality of gate lines and the plurality of data lines crossing one another to bound pixel units and the pixel unites each including a pixel electrode and a thin film transistor, which includes a drain electrode, the array substrate further includes a common electrode line, the drain electrode includes an extension portion and the common electrode line and the extension portion form a light blocking structure together such that an orthographic projection of the light blocking structure on a plane where the pixel electrode is located is located near an edge of the pixel electrode. The array substrate provided by the present disclosure is applied to a display device.
Abstract:
An array substrate, a method of manufacturing the same, and a display device are provided. In the array substrate of the present disclosure, the gate cutout is formed in the area where the gate line intersects the data line. The array substrate can reduce the coupling capacitance between the data line and the gate line. When the gate cutout extends beyond the area between the first thin film transistor and the second thin film transistor, the mutual interference between two thin film transistors of each pixel region can be further reduced.
Abstract:
A pixel structure, an array substrate and a display device is provided. The pixel structure includes a base substrate, and a gate layer and a source/drain layer arranged on the base substrate. An overlapping region is present between the gate layer and the source/drain layer, and the gate layer and/or the source/drain layer comprises a hollow structure located in the overlapping region.
Abstract:
An array substrate and a display apparatus are provided according to embodiments of the disclosure. A pixel unit includes a first sub-pixel electrode and a second sub-pixel electrode, the first sub-pixel electrode is connected to a drain of the first TFT, and the second sub-pixel electrode is connected to a drain of the second TFT, a resistance between a source of the first TFT and the data line connected to the first TFT is greater than a resistance between a source of the second TFT and the data line connected to the second TFT, and/or, a resistance between the drain of the first TFT and the first sub-pixel electrode is greater than a resistance between the drain of the second TFT and the second sub-pixel electrode.
Abstract:
The present invention discloses a circuit, a display substrate and a display device, the circuit comprises a plurality of circuit modules, distances of at least one circuit module from two circuit modules adjacent thereto are a first distance and a second distance, respectively, the first distance is smaller than the second distance, and the absolute value of the difference between the second distance and the first distance is not equal to an integer multiple of the first distance. In the present invention, distances of at least one circuit module from two circuit modules adjacent thereto satisfy the above specific condition, so that at least one circuit module can be prevented from being positioned at the middle position of the standing wave field between the two circuit modules adjacent thereto, therefore, interference of standing wave to transmission signals is reduced, and signal distortion and signal attenuation are alleviated.
Abstract:
The display panel includes multiple sub-pixel areas, a first substrate and a second substrate oppositely arranged to form a cell; and a liquid crystal layer disposed between the first substrate and the second substrate. The second substrate includes a first sub-pixel electrode and a second sub-pixel electrode disposed in each of multiple areas respectively corresponding to the plurality of sub-pixel areas, a protruded object is disposed in a gap between the first sub-pixel electrode and the second sub-pixel electrode, which are adjacent to each other and are respectively included in different sub-pixel areas, and a projection of the protruded object at least partially overlaps an area of the liquid crystal layer corresponding to the gap.
Abstract:
A display substrate includes a first base substrate; a gate line, a data line and a common electrode line arranged on the first base substrate; a plurality of pixel units each including a first sub-pixel electrode, a second sub-pixel electrode, a first thin film transistor, a second thin film transistor and a third thin film transistor; and a charge adjustment-control line arranged on the first base substrate, where the charge adjustment-control line and the gate line are between the first sub-pixel electrode and the second sub-pixel electrode. The first thin film transistor is connected to the gate line, the data line and the first sub-pixel electrode; the second thin film transistor is connected to the gate line, the data line and the second sub-pixel electrode; the third thin film transistor is connected to the charge adjustment control line, the first sub-pixel electrode and the common electrode line.
Abstract:
The present disclosure provides an array substrate, a display panel, a display device and a method for manufacturing the array substrate. The array substrate includes: a plurality of gate lines and a plurality of data lines arranged in a crisscross manner on a base substrate, so as to define a plurality of subpixels; and a common electrode arranged opposite to each of the plurality of subpixels;. At least one of the subpixels is provided with a common electrode line connected to the common electrode at an identical subpixel region.
Abstract:
The present application discloses an array substrate, a display panel and a display device. The array substrate comprises: a plurality of data lines and a plurality of gate lines, a plurality of pixel units defined by the plurality of data lines and the plurality of gate lines, each pixel unit comprising a first pixel electrode, a second pixel electrode, and at least three thin film transistors, the pixel unit further comprising: a charge-discharge element, the charge-discharge element and a third thin film transistor in the at least three thin film transistors charging and discharging the pixel unit such that the pixel unit forms a first voltage region and a second voltage region with different voltages.