Abstract:
A thin film transistor array panel includes a substrate; a data line disposed on the substrate; a buffer layer disposed on the substrate and spaced apart from the data line in a plan view; a thin film transistor disposed on the buffer layer, the thin film transistor including an oxide semiconductor layer; and a pixel electrode connected to the thin film transistor.
Abstract:
A manufacturing method includes forming a gate member and a common electrode line on a substrate. A gate insulating layer is formed on the gate member and the common electrode line. A semiconductor member and a data member are formed on the gate insulating layer. A first passivation layer is formed on the semiconductor member and the data member. A plurality of color filters is formed on the first passivation layer. A conductor layer and a second passivation layer are formed on the plurality of color filters. A first contact hole exposes a common electrode. A second contact hole exposes the drain electrode. The first and second contact holes are formed by a photolithography process. A pixel electrode connected to the drain electrode is formed through the first contact hole. A connecting member connected to the common electrode line and the common electrode is formed through the second contact hole.
Abstract:
A thin film transistor array panel includes a substrate, gate lines, each including a gate pad, a gate insulating layer, data lines, each including a data pad connected to a source and drain electrode, a first passivation layer disposed on the data lines and the drain electrode, a first electric field generating electrode, a second passivation layer disposed on the first electric field generating electrode, and a second electric field generating electrode. The gate insulating layer and the first and second passivation layers include a first contact hole exposing a part of the gate pad, the first and second passivation layers include a second contact hole exposing a part of the data pad, and at least one of the first and second contact holes have a positive taper structure having a wider area at an upper side than at a lower side.
Abstract:
A display substrate includes a base substrate, a common line on the base substrate, a first insulation layer covering the common line and having a first insulating material, a conductive pattern on the first insulation layer and including a source electrode and a drain electrode, a second insulation layer covering the drain electrode and the common line, and including a lower second insulation layer having a second insulating material and an upper second insulation layer having the first insulating material, a first electrode electrically connected to the drain electrode through a first contact hole in the second insulation layer, and a second electrode electrically connected to the common line through a second contact hole in the first and second insulation layers. The upper and lower second insulation layers on the drain electrode have a first hole and a second hole respectively that form the first contact hole.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A display substrate includes a data pad on a base substrate, a first buffer layer which covers the data pad, a second buffer layer pattern which is disposed on the first buffer layer and separated from the data pad in a plan view, an active layer on the second buffer layer pattern, a gate insulation layer pattern on the active layer, both ends of the active layer exposed by the gate insulation layer pattern, and a gate electrode on the gate insulation layer pattern.
Abstract:
A thin film transistor includes a gate electrode, an active pattern over the gate electrode and including an oxide semiconductor, an etch-stop layer covering the active pattern, a source electrode on the etch-stop layer, a drain electrode on the etch-stop layer and spaced from the source electrode, and an active protection pattern between the etch-stop layer and the active pattern and electrically coupled to the source electrode and the drain electrode.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.