Abstract:
A conductive pattern for a display device includes a first layer including aluminum or an aluminum alloy disposed on a substrate and forming a first taper angle with the substrate, and a second layer disposed on the first layer forming a second taper angle with the first layer, in which the second taper angle is smaller than the first taper angle.
Abstract:
A transparent electrode pattern includes a first electrode including a first lower conductive layer and a first upper conductive layer located on the first lower conductive layer and a second electrode spaced apart from the first electrode and including a second lower conductive layer and a second upper conductive layer positioned on the second lower conductive layer. The first and second lower conductive layers may include a metal nanowire. The first and second upper conductive layers may include a transparent conductive material that is dry-etchable.
Abstract:
A display apparatus includes a backlight assembly which generates a light and a display panel which receives the light to display an image, the display panel including a first substrate, a second substrate which faces the first substrate and is disposed closer to the backlight assembly than the first substrate, a gate line disposed on the first substrate, a data line disposed on the gate line and insulated from the gate line, a thin film transistor disposed on the first substrate and electrically connected to the gate line and the data line, and a reflection preventing layer disposed between the first substrate and the gate line to reduce an amount of a reflected light reflected by the gate line.
Abstract:
A method of manufacturing a thin film transistor array panel includes: a gate insulating layer disposed on a gate electrode, a semiconductor disposed on the gate insulating layer, a source electrode opposite a drain electrode disposed on the semiconductor, a color filter disposed on the gate insulating layer, an overcoat disposed on the color filter and including an inorganic material. A first dry etching is performed using the photosensitive film pattern as a mask to etch the overcoat and provide a preliminary contact hole, through which a portion of the color filter is exposed. A second dry etching is performed using the overcoat as a mask to etch the color filter through the preliminary contact hole and to provide a contact hole, through which a portion of the drain electrode is exposed. A pixel electrode is connected to the drain electrode through the contact hole, on the overcoat.
Abstract:
A display panel includes a base substrate, a pixel including a thin film transistor and a display element, a first signal line connected to the pixel, and a second signal line disposed on a layer different from the first signal line. At least one of the first signal line and the second signal line includes a lower layer including a conductive material and an upper layer disposed on the lower layer and including a conductive material. The upper layer has an etch selectivity in a range equal to or greater than about 0.5 and equal to or smaller than about 3 with respect to the lower layer.
Abstract:
A connecting structure of a conductive layer includes a first conductive layer, a first insulating layer disposed on the first conductive layer and including a first opening overlapping the first conductive layer, a connecting conductor disposed on the first insulating layer and connected to the first conductive layer through the first opening, an insulator island disposed on the connecting conductor, a second insulating layer disposed on the first insulating layer and including a second opening overlapping the connecting conductor and the insulator island, and a second conductive layer disposed on the second insulating layer and connected to a connecting electrode through the second opening. A sum of a thickness of the first insulating layer and a thickness of the second insulating layer is greater than or equal to 1 μm, and each of the thicknesses of the first and second insulating layers is less than 1 μm.
Abstract:
A display device includes: a substrate; first and second transistors provided on the substrate to be spaced apart from each other, the first and second transistors being electrically connected to each other; and a display unit electrically connected to the first transistor, wherein the first transistor includes a first semiconductor layer including crystalline silicon, a first gate electrode, a first source electrode, and a first drain electrode, wherein the second transistor includes a second semiconductor layer including an oxide semiconductor, a second gate electrode, a second source electrode, and a second drain electrode, wherein each of the second source electrode and the second drain electrode includes a first layer that includes molybdenum and is provided on the second semiconductor layer, a second layer that includes aluminum and is provided on the first layer, and a third layer that includes titanium and is provided on the second layer.
Abstract:
A transistor array panel is manufactured by a method that reduces or obviates the need for highly selective etching agents or complex processes requiring multiple photomasks to create contact holes. The panel includes: a substrate; a buffer layer positioned on the substrate; a semiconductor layer positioned on the buffer layer; an intermediate insulating layer positioned on the semiconductor layer; and an upper conductive layer positioned on the intermediate insulating layer, wherein the semiconductor layer includes a first contact hole, the intermediate insulating layer includes a second contact hole positioned in an overlapping relationship with the first contact hole, and the upper conductive layer is in contact with a side surface of the semiconductor layer in the first contact hole.
Abstract:
A display device according to an exemplary embodiment of the present invention includes: a substrate; a gate line and a data line that are provided on the substrate and are insulated from each other; a thin film transistor that is connected with the gate line and the data line; and a pixel electrode that is connected with the thin film transistor, in which at least one of the gate line and the data line includes a metal layer and a blocking layer that contacts the metal layer, and the blocking layer includes a first metal from a first group including molybdenum (Mo) and tungsten (W), a second metal from a second group including vanadium (V), niobium (Nb), zirconium (Zr), and tantalum (Ta), and oxygen (O).
Abstract:
A display apparatus includes: a base substrate; a thin film transistor and a power supply wire on the base substrate; a first electrode on the base substrate, and electrically connected to the thin film transistor; a light emitting layer and a common layer on the first electrode; and a second electrode on the common layer. The power supply wire includes: a first conductive layer; a second conductive layer on the first conductive layer; and a third conductive layer on the second conductive layer. The third conductive layer protrudes more than the second conductive layer on a side surface of the power supply wire, and the second electrode contacts a side surface of the second conductive layer.