Abstract:
Embodiments disclosed in the detailed description include metal oxide semiconductor (MOS) isolation schemes with continuous active areas separated by dummy gates. A MOS device includes an active area formed from a material with a work function that is described as either an n-metal or a p-metal. Active components are formed on this active area using materials having a similar work function. Isolation is effectuated by positioning a dummy gate between the active components. The dummy gate is made from a material having an opposite work function relative to the material of the active area. For example, if the active area was a p-metal material, the dummy gate would be made from an n-metal, and vice versa.
Abstract:
Metal-on-Metal (MoM) capacitors having laterally displaced layers and related systems and methods are disclosed. In one embodiment, a MoM capacitor includes a plurality of vertically stacked layers that are laterally displaced relative to one another. Lateral displacement of the layers minimizes cumulative surface process variations making a more reliable and uniform capacitor.
Abstract:
Spiral metal-on-metal (MoM or SMoM) capacitors and related systems and methods of forming MoM capacitors are disclosed. In one embodiment, a MoM capacitor disposed in a semiconductor die is disclosed. The MoM capacitor comprises a first electrode coupled to a first trace. The first trace is coiled in a first inwardly spiraling pattern and comprised of first parallel trace segments. The MoM capacitor also comprises a second electrode coupled to a second trace. The second trace is coiled in the first inwardly spiraling pattern and comprised of second parallel trace segments interdisposed between the first parallel trace segments. Reduced variations in the capacitance allow circuit designers to build circuits with tighter tolerances and generally improve circuit reliability.
Abstract:
In a particular embodiment, a method of forming a metal-insulator-metal (MIM) capacitor includes removing, using a lithographic mask, a first portion of an optical planarization layer to expose a region in which the MIM capacitor is to be formed. A second portion of an insulating layer is formed on a first conductive layer that is formed on a plurality of trench surfaces within the region. The method further includes removing at least a third portion of the insulating layer according to a lift-off technique.
Abstract:
A semiconductor die having a plurality of metal layers, including a set of metal layers having a preferred direction for minimum feature size. The set of metal layers are such that adjacent metal layers have preferred directions orthogonal to one another. Finger capacitors formed in the set of metal layers are such that a finger capacitor formed in one metal layer has a finger direction parallel to the preferred direction of that metal layer. In bidirectional metal layers, capacitor fingers may be in either direction.
Abstract:
A semiconductor device is disclosed that includes a plurality of fins on a substrate. A long channel gate is disposed over a first portion of the plurality of fins. A gate contact is provided having an extended portion that extends into an active area from a gate contact base outside the active area.
Abstract:
Certain aspects of the present disclosure are directed to a semiconductor device. The semiconductor device generally includes a substrate, at least one silicon-on-insulator (SOI) transistor disposed above the substrate, a gate-all-around (GAA) transistor disposed above the substrate, and a fin field-effect transistor (FinFET) disposed above the substrate.
Abstract:
Aspects generally relate to a heterojunction bipolar transistor (HBT), and method of manufacturing the same. The HBT including an emitter a first, a first side of a base coupled to a second side of the emitter opposite the first side of the emitter. A collector coupled to the base on a second side of the base opposite the emitter, wherein an area of a junction between the base and the collector is less than or equal to an area of a junction between the base and the emitter. A dielectric coupled to the collector. A first conductive base contact coupled to the base and adjacent to the collector and extending over a base-collector junction, the conductive base contact operative as a field plate.
Abstract:
A metal-oxide-semiconductor (MOS) device for radio frequency (RF) applications may include a guard ring. The guard ring may surround the MOS device and at least one other MOS device. The MOS device may further include a level zero contact layer coupled to a first interconnect layer through level zero interconnects and vias. The first interconnect layer may be for routing to the MOS device.
Abstract:
Certain aspects of the present disclosure provide apparatus for thermal matching of integrated circuits (ICs). One example apparatus generally includes a first substrate, a first IC disposed on the first substrate and having a second substrate, and a second IC disposed on the first substrate. The second IC may include a third substrate, a thermal conductivity adjustment region comprising different material than the third substrate, the thermal conductivity adjustment region being adjacent to a first side of the third substrate, and one or more electrical components formed in one or more layers of the second IC adjacent to a second side of the third substrate, wherein the first side and the second side are opposite sides of the third substrate, and wherein a thermal conductivity of the thermal conductivity adjustment region is closer to a thermal conductivity of the second substrate than a thermal conductivity of the third substrate.