Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first cavity through the substrate, and a toroid inductor configured around the first cavity of the substrate. The toroid inductor includes a set of windings configured around the first cavity. The set of windings includes a first set of interconnects on a first surface of the substrate, a set of though substrate vias (TSVs), and a second set of interconnects on a second surface of the substrate. The first set of interconnects is coupled to the second set of interconnects through the set TSVs. In some implementations, the integrated device further includes an interconnect material (e.g., solder ball) located within the first cavity. The interconnect material is configured to couple a die to a printed circuit board. In some implementations, the interconnect material is part of the toroid inductor.
Abstract:
An inductor design on a wafer level package (WLP) does not need to depopulate the solder balls on the die because the solder balls form part of the inductor. One terminal on the inductor couples to the die, the other terminal couples to a single solder ball on the die, and the remaining solder balls that mechanically contact the inductor remain electrically floating. The resulting device has better inductance, direct current (DC) resistance, board-level reliability (BLR), and quality factor (Q).
Abstract:
Some novel features pertain to package substrates that include a substrate having an embedded package substrate (EPS) capacitor with equivalent series resistance (ESR) control. The EPS capacitor includes two conductive electrodes separated by a dielectric or insulative thin film material and an equivalent series resistance (ESR) control structure located on top of each electrode connecting the electrodes to vias. The ESR control structure may include a metal layer, a dielectric layer, and a set of metal pillars which are embedded in the set of metal pillars are embedded in the dielectric layer and extend between the electrode and the metal layer. The EPS capacitor having the ESR control structure form an ESR configurable EPS capacitor which can be embedded in package substrates.
Abstract:
A ceramic capacitor is provided that includes a first capacitor surface, a second opposing capacitor surface, and metal plates perpendicular to the first capacitor surface and second opposing capacitor surface. The metal plates extend from the first capacitor surface to the second opposing capacitor surface. The ceramic capacitor is capable of being interposed between a die and a substrate. A portion of the metal plates are capable of being coupled to conductive pads of the die on the first capacitor surface and to conductive pads of the substrate on the second capacitor surface.
Abstract:
Some implementations provide an integrated device that includes a capacitor and an inductor. The inductor is electrically coupled to the capacitor. The inductor and the capacitor are configured to operate as a filter for an electrical signal in the integrated device. The inductor includes a first metal layer of a printed circuit board (PCB), a set of solder balls coupled to the PCB, and a second metal layer in a die. In some implementations, the capacitor is located in the die. In some implementations, the capacitor is a surface mounted passive device on the PCB. In some implementations, the first metal layer is a trace on the PCB. In some implementations, the inductor includes a third metal layer in the die. In some implementations, the second metal layer is an under bump metallization (UBM) layer of the die, and the third metal is a redistribution layer of the die.
Abstract:
An integrated radio frequency (RF) circuit structure may include a resistive substrate material and a switch. The switch may be arranged in a silicon on insulator (SOI) layer supported by the resistive substrate material. The integrated RF circuit structure may also include an isolation layer coupled to the SOI layer. The integrated RF circuit structure may further include a filter, composed of inductors and capacitors. The filter may be arranged on a surface of the integrated RF circuit structure, opposite the resistive substrate material. In addition, the switch may be arranged on a first surface of the isolation layer.
Abstract:
An embedded layered inductor is provided that includes a first inductor layer and a second inductor layer coupled to the first inductor layer. The first inductor layer comprises a patterned metal layer that may also be patterned to form pads. The second inductor layer comprises metal deposited in a dielectric layer adjacent the patterned metal layer.
Abstract:
A package on package structure may be formed by fabricating or providing a bottom package having a substrate, at least one die on top of the substrate, and bonding pads on the top of the substrate. Next, a frame is formed on the bonding pads and connected to the bonding pads. Next, a package material is molded over the top of the substrate to encapsulate the frame, the die, and the pads or substantially encapsulates these components. Next, a portion of the molded package material is removed to expose at least a portion of the frame. The exposed frame portions are formed such that a desired fan in or fan out configuration is obtained. Next, a non-conductive layer is formed on the exposed frame. Last, a second package having a die or chip is connected to the exposed portion of the frame to form a package on package structure.
Abstract:
The present disclosure provides semiconductor packages and methods for fabricating PoP semiconductor packages. The PoP semiconductor package may comprise a first semiconductor package, the first semiconductor package comprising an anodized metal lid structure comprising (i) a central cavity having a central cavity opening direction and (ii) at least one perimeter cavity having a perimeter cavity opening direction facing in an opposite direction of the central cavity opening direction, a first semiconductor device arranged in the central cavity of the anodized metal lid structure, a redistribution layer electrically coupled to the first semiconductor device, wherein a conductive trace formed in the redistribution layer is exposed to the at least one perimeter cavity, and solder material arranged in the at least one perimeter cavity, and a second semiconductor package, the second semiconductor package comprising at least one conductive post, wherein the at least one conductive post is electrically coupled to the solder material arranged in the at least one perimeter cavity.