Abstract:
An object of the present invention is to provide plate width center alignment method and apparatus for a welding machine, which can dispense with a detection driving device, which is simple in construction but can perform the detection from a position closest to a cutting-welding position, and which is high in plate width center alignment accuracy. Plate side edge detectors which are included in a plate width center alignment means for detecting plate widths of two cut plates and aligning plate width centers with each other, and which detect widthwise plate side edges of the two cut plates, are disposed on a movable frame provided with a cutting means and a welding means, elongated in the width direction of a web and movable in that direction.
Abstract:
A splicing machine for connecting metallic bands including at least three toolings determining successively the cutting profile of both edges (m1, m2) to be connected, the welding of both edges on to one another and the flattening of the welded matter in excess. The machine includes a tool carriage (3) mounted to slide parallel to the running direction of the bands (M1, M2) on which are mounted to slide, perpendicular to the running direction, at least two supporting chassis (41, 51), each for one of the connecting toolings (4,5), a motor and a worm (32) for positioning either connecting tooling (4,5) in a common working position, by sliding the tool carriage (3) and apparatus to control the transversal sliding motion of the corresponding tooling for the actuation of the latter.
Abstract:
The linear groove formation method includes a resist forming process of forming a coated resist on a surface of a steel sheet, a laser irradiating process of irradiating laser beams onto the steel sheet while repeating a laser scanning in a direction intersecting a rolling direction of the steel sheet cyclically in the rolling direction of the steel sheet to remove the coated resist in portions irradiated with the laser beams, and an etching process of forming linear grooves by etching portions of the steel sheet from which the coated resist is removed. In the laser irradiating process, the coated resist is removed by using two or more laser irradiating devices, with a certain irradiation energy, a certain beam diameter in a direction perpendicular to a laser scanning direction, and a certain incidence angle with respect to the surface of the steel sheet.
Abstract:
A capacitor and methods of processing an anode metal foil are presented. The capacitor includes a housing, one or more anodes disposed within the housing, one or more cathodes disposed within the housing, one or more separators disposed between an adjacent anode and cathode, and an electrolyte disposed around the one or more anodes, one or more cathodes, and one or more separators within the housing. The one or more anodes each include a metal foil that includes a first plurality of tunnels through a thickness of the metal foil in a first ordered arrangement having a first diameter, and a second plurality of tunnels through the thickness of the metal foil having a second ordered arrangement and a second diameter greater than the first diameter.
Abstract:
A controlled thermal coefficient product manufacturing system and method is disclosed. The disclosed product relates to the manufacture of metallic material product (MMP) having a thermal expansion coefficient (TEC) in a predetermined range. The disclosed system and method provides for a first material deformation (FMD) of the MMP that comprises at least some of a first material phase (FMP) wherein the FMP comprises martensite randomly oriented and a first thermal expansion coefficient (FTC). In response to the FMD at least some of the FMP is oriented in at least one predetermined orientation. Subsequent to deformation, the MMP comprises a second thermal expansion coefficient (STC) that is within a predetermined range and wherein the thermal expansion of the MMP is in at least one predetermined direction. The MMP may be comprised of a second material phase (SMP) that may or may not transform to the FMP in response to the FMD.
Abstract:
A laser descaling device and process includes a first laser sending a ray to the product to be descaled, reflected rays being intercepted by sensors that send collected information into a processing unit that calculates the absorption of the ray by the surface of the product, deduces the emissivity of the oxidized surface in the direction of the reflected rays, and correlates this emissivity with reference information prerecorded inside the processing unit; a second laser sends a ray onto the surface of the product, the spots of the rays covering the entire surface to be descaled, the second laser being controlled by a control unit receiving information provided by the processing unit making it possible to determine the operating parameters to be imposed on the second laser to obtain the descaling of the surface of the product, compared with experimental results prerecorded in the control unit.
Abstract:
An apparatus is provided for cutting pieces from laminar material wound in coil using a laser or plasma cutting machine. In one apparatus according to the invention, a cutting station includes at least one moveable cutting head arranged between the station's entrance and exit, and a means to position a portion of laminar material on a cutting plane. The positioning means includes three separate locking devices, each of which can lock on a portion of the laminar material as it passes through the cutting station. The three locking devices are arranged in succession: the first near the cutting station's entrance, the second near the exit, and the third between the first and second locking devices. At least the third locking device is movable, in the space between the other two devices, along a portion of laminar material while the material is kept under tension.
Abstract:
A binding machine comprising: —a feeding device for feeding a binding element (3) in the form of a wire or strap around one or more objects and subsequently retracting the binding element to draw it tightly around said objects; and —a laser welding device (12) for forming a welded joint between a first section at the leading end of the binding element and an adjoining second section at the trailing end of the part (3a) of the binding element fed around said objects to thereby secure this part of the binding element in a loop around the objects. The laser welding device directs a laser beam onto an area (30) at the trailing end of said second section in order to reduce the tensile strength of the binding element, wherein the feeding device retracts the binding element in order to subject this area to tensile stress and thereby cause the binding element to be broken off.
Abstract:
Provided is a method for refining magnetic domains of grain-oriented electrical steel plates including: a steel plate supporting roll position adjusting step of controlling a vertical direction position of the steel plate while supporting the steel plate; a laser radiating step of melting the steel plate by radiating a laser beam to form grooves on the surface of the steel plate; and a setting and maintaining step of setting and maintaining an internal operation environment of a laser room in which the laser radiation is performed, so as to increase magnetic domain refinement efficiency and improve workability by optimizing equipment and processes, thereby increasing the processing capacity.
Abstract:
A device for moving at least one cutting and welding arrangement able to cut, then weld a tail of a first metal strip to a head of a second metal strip, includes at least one first carriage holding at least one welding head. The first carriage is movable over a guide path following a first course across a transverse strip region. At least one second carriage is movable separately from the first carriage and holds a cutting head. The second carriage is movable on a guide path following a second course. The welding head is used exclusively for a welding mode, the second carriage is used exclusively for a cutting mode and the two carriages have parked positions on either side of the tail and head widths of the strips. A welding method which is associated with the device is also provided.