Abstract:
To optimize equipment and processes to enhance magnetic domain refinement efficiency and to enhance workability to improve processing capability, a method of refining a magnetic domain of a grain-oriented electrical steel plate includes zigzag controlling for transferring the steel plate without being inclined in right and left directions along a production line center, steel plate support roll position adjusting for controlling a position of the steel plate in up and down directions while supporting the steel plate, laser beam irradiating for irradiating a laser beam to a surface of the steel plate to melt the steel plate to form a groove in the surface of the steel plate, and removing for absorbing and removing radiant heat due to reflection of the laser beam irradiated to the surface of the steel plate during the laser beam irradiating.
Abstract:
By optimizing equipment and processing, magnetic domain miniaturization efficiency can be increased, workability can be improved, and processing ability can be increased through same. Provided is a method for miniaturizing the magnetic domains of a directional electric steel plate, the method comprising: a steel plate supporting roll position adjusting step of controlling the vertical direction position of a steel plate while supporting the steel plate progressing along a production line; and a laser emitting step of melting the steel plate by emitting a laser beam to form grooves on the surface of the steel plate and a removing steel plate surface step of to remove remaining spatters dropped on the surface of the steel plate after the laser emitting.
Abstract:
Provided are a method and apparatus for uniformly controlling the strip temperature of the rapid cooling section of a continuous annealing line. A plurality of sets of cooling nozzle blocks for controlling the strip temperature is installed at the front and back sides of the strip, and is divided into lengthwise flow control nozzle blocks and widthwise flow control nozzle blocks. Strip center temperature meters and widthwise direction temperature meters are installed at the intake and discharge sides of the rapid cooling section. Temperatures obtained using the strip center temperature meters and the width direction temperature meters are used to respectively control the spraying of mist for the lengthwise flow control nozzle blocks and the widthwise flow control nozzle blocks in order to uniformly control the strip temperature and minimize changes in the flatness of the strip. The widthwise temperature meters at the intake and discharge ends of the rapid cooling section of the continuous annealing line are used to detect the temperature. Feedback/feedforward control technique can be used to uniformly control the widthwise temperature of the strip through flow rate control over mist sprayed in the widthwise direction of the rapid cooling section.
Abstract:
Provided is a method for refining magnetic domains of grain-oriented electrical steel plates including: a steel plate supporting roll position adjusting step of controlling a vertical direction position of the steel plate while supporting the steel plate; a laser radiating step of melting the steel plate by radiating a laser beam to form grooves on the surface of the steel plate; and a setting and maintaining step of setting and maintaining an internal operation environment of a laser room in which the laser radiation is performed, so as to increase magnetic domain refinement efficiency and improve workability by optimizing equipment and processes, thereby increasing the processing capacity.
Abstract:
By optimizing equipment and processing, magnetic domain miniaturization efficiency can be increased, workability can be improved, and processing ability can be increased through same. Provided is a method for miniaturizing the magnetic domains of a directional electric steel plate, the method comprising: a steel plate supporting roll position adjusting step of controlling the vertical direction position of a steel plate while supporting the steel plate progressing along a production line; and a laser emitting step of melting the steel plate by emitting a laser beam to form grooves on the surface of the steel plate, wherein the laser emitting step includes an angle changing step of changing an emitting line angle of the laser beam with respect to a width direction of the steel plate while an optical system emitting the laser beam onto the steel plate is rotated with respect to the steel plate, and a focal distance maintaining step of changing a tilt of the steel plate supporting roll which supports the steel plate according to a change in focal distance of the laser beam in the width direction of the steel plate.
Abstract:
Provided are a method and apparatus for uniformly controlling the strip temperature of the rapid cooling section of a continuous annealing line. A plurality of sets of cooling nozzle blocks for controlling the strip temperature is installed at the front and back sides of the strip, and is divided into lengthwise flow control nozzle blocks and widthwise flow control nozzle blocks. Strip center temperature meters and widthwise direction temperature meters are installed at the intake and discharge sides of the rapid cooling section. Temperatures obtained using the strip center temperature meters and the width direction temperature meters are used to respectively control the spraying of mist for the lengthwise flow control nozzle blocks and the widthwise flow control nozzle blocks in order to uniformly control the strip temperature and minimize changes in the flatness of the strip. The widthwise temperature meters at the intake and discharge ends of the rapid cooling section of the continuous annealing line are used to detect the temperature. Feedback/feedforward control technique can be used to uniformly control the widthwise temperature of the strip through flow rate control over mist sprayed in the widthwise direction of the rapid cooling section.