Group-III Nitride Devices and Systems on IBAD-Textured Substrates

    公开(公告)号:US20190221712A1

    公开(公告)日:2019-07-18

    申请号:US16365521

    申请日:2019-03-26

    摘要: A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer. Electronic devices such as LEDs can be manufactured from such structures. Because the substrate can act as both a reflector and a heat sink, transfer to other substrates, and use of external reflectors and heat sinks, is not required, greatly reducing costs. Large area devices such as light emitting strips or sheets may be fabricated using this technology.

    Gate for an Enhancement-Mode Transistor
    47.
    发明申请

    公开(公告)号:US20190051732A1

    公开(公告)日:2019-02-14

    申请号:US16050776

    申请日:2018-07-31

    申请人: IMEC VZW

    发明人: Steve Stoffels

    摘要: An enhancement-mode transistor and method for forming a gate of an enhancement-mode transistor are provided. The method includes: (a) providing a p-doped AlxGayInzN gate layer, consisting of a first part and a second part on top of the first part, above a p-doped Alx′Gay′Inz′N channel layer of an enhancement-mode transistor under construction; and (b) providing a metal gate layer on the top surface of the second part, the metal gate layer being formed of a material such as to form a Schottky barrier with the second part, wherein providing the p-doped AlxGayInzN gate layer comprises the steps of: (a1) growing the first part above the p-doped Alx′Gay′Inz′N channel layer of the enhancement-mode transistor under construction, the first part having an average Mg concentration of at most 3×1019 atoms/cm3, and (a2) growing the second part on the first part, the second part having an average Mg concentration higher than 3×1019 atoms/cm3 and having a top surface having a Mg concentration higher than 6×1019 atoms/cm3.