Abstract:
A probe assembly can be connected and disconnected from its electrical harness within a vacuum chamber so that the probe assembly with the work piece mounted can be rotated and tilted without interference from a cable, and can then be reconnected without opening the vacuum chamber. Also described is a means of grounding a sample and probes when the probe assembly is disconnected from its electrical harness and a means of preventing damage to the probe mechanism and the probe itself by ensuring that the probes are not sticking up too far during operations.
Abstract:
Embodiments of the present invention provide method and apparatus of restoring probes attached to the manipulator in a control environment (e.g. vacuum chamber of an focus ion beam) without a need to open the vacuum chamber. Another embodiment of the present invention teaches construction and application of various shapes of nanoforks from a nanoneedles array inside a FIB vacuum chamber. In another embodiment, the present invention teaches edition and correction of completed and oxide-coated circuit boards by re-nano-wiring using nanoneedles of a nanoneedles array (as nanowire supply), contained in the same controlled space. In this embodiment, individual nanoneedles in a nanoneedle array are manipulated by a manipulator and placed in such a way to make electrical contact between the desired points.
Abstract:
The invention relates to a method of preparing and imaging a sample using a particle-optical apparatus, equipped with an electron column and an ion beam column, a camera system, a manipulator. The method comprises the steps of deriving a first ptychographic image of the sample from a first electron image, thinning the sample, and forming a second ptychographic image of the sample. In an embodiment of the invention the seed image used for the second image is the first ptychographic image. In another embodiment the second ptychographic image is the image of the layer removed during the thinning. In another embodiment the inner potential of the sample is determined and dopant concentrations are determined.
Abstract:
The high magnification, high resolution and real-time property of an SEM image are realized when the electrical characteristics of an inspection object are measured, without affecting the electrical characteristics of the inspection object. A high-quality, high-magnification first image including an image of a target position in the inspection object on a sample is acquired. Next, a low-quality, low-magnification second image including the image of the target position in the inspection object on the sample and probe images is acquired. Next, data on the first image is built into the second image to generate an image for coarse-access observation which is the same in magnification as the second image. The generation of the image for coarse-access observation is repeated until a probe comes close to the target position in the inspection object.
Abstract:
An apparatus is disclosed for forming a sample of an object, extracting the sample from the object, and subjecting this sample to microanalysis including surface analysis and electron transparency analysis in a vacuum chamber. In some embodiments, a means is provided for imaging an object cross section surface of an extracted sample. Optionally, the sample is iteratively thinned and imaged within the vacuum chamber. In some embodiments, the sample is situated on a sample support including an optional aperture. Optionally, the sample is situated on a surface of the sample support such that the object cross section surface is substantially parallel to the surface of the sample support. Once mounted on the sample support, the sample is either subjected to microanalysis in the vacuum chamber, or loaded onto a loading station. In some embodiments, the sample is imaged with an electron beam substantially normally incident to the object cross section surface.
Abstract:
A system is disclosed for obtaining layered cathodoluminescence images of a sample wherein the light collecting equipment is highly efficient and wherein the microtoming or Focused Ion Beam equipment does not interfere with the efficiency of the light collecting equipment and wherein the position of the sample with respect to the light collecting equipment is not disturbed in the microtoming or ion beam milling process. Embodiments are disclosed allowing simultaneous collection of cathodoluminescence images and collection of other electron based imaging signals such as backscattered and secondary electrons.
Abstract:
The high magnification, high resolution and real-time property of an SEM image are realized when the electrical characteristics of an inspection object are measured, without affecting the electrical characteristics of the inspection object. A high-quality, high-magnification first image including an image of a target position in the inspection object on a sample is acquired. Next, a low-quality, low-magnification second image including the image of the target position in the inspection object on the sample and probe images is acquired. Next, data on the first image is built into the second image to generate an image for coarse-access observation which is the same in magnification as the second image. The generation of the image for coarse-access observation is repeated until a probe comes close to the target position in the inspection object.
Abstract:
The disclosed apparatus enables attachment to a sample to be excised from a frozen bulk sample, the transfer of the excised sample from the bulk sample to a separate cooled support structure by means of a manipulator tip that can be cooled and maintained at a temperature below that of vitreous ice and which provides both an active cooling path and cryogenic shielding to maintain the temperature of the excised sample below that of vitreous ice. The cryogenic shielding also helps minimize contamination of the cooled sample by condensation of volatile material. A method is disclosed for extracting a portion of a frozen sample, comprising attaching a thermally-isolated cooled manipulator tip to the sample with vapor deposition and removing a portion of the sample affixed to the tip without changing phase of the portion of the sample being removed, with a focused ion beam.
Abstract:
A method and system is provided for automatically preparing transmission electron microscopy (TEM) samples for examination by depositing extremely small samples onto a grid without need for a blotting step. A sample liquid droplet is formed at the end of a capillary, wherein a portion of the liquid is transferred to the TEM sample grid by contact. The excess volume in the liquid droplet is then retracted by an adjacent capillary. After a predetermined time interval, the retraction capillary is moved toward the drop of the sample to remove the excess volume. As compared to a conventional machine, where the blotting procedure can deform the structure of the molecule of interest, the present invention utilizes a very low shear rate for removal of the excess sample fluid.
Abstract:
A sample preparing device has a sample stage that supports a sample and undergoes rotation about a first rotation axis to bring a preselected direction of the sample piece into coincidence with an intersection line between a first plane formed by a surface of the sample piece and a second plane. A manipulator holds sample piece of the sample and undergoes rotation about a second rotation axis independently of the sample stage to rotate the sample piece to a preselected position in the state in which the preselected direction of the sample piece coincides with the intersection line. The manipulator is disposed relative to the sample stage so that an angle between the second rotation axis and the surface of the sample is in the range of 0° to 45°. The second plane corresponds to a plane obtained by rotating around the second rotation axis a line segment which is vertical to the surface of the sample and of which one end corresponds to an intersection between the surface of the sample and the second rotation axis.