Abstract:
Disclosed is a robotic work tool (100) for use with at least one guiding wire (250; 260) adapted to conduct electric current to generate a magnetic field around the guiding wire. The robotic work tool has a sensing system (510) adapted to detect a strength of the magnetic field, a steering system (540), a controller (530) configured to control the steering system in response to output from the sensing system by means of a feedback control loop (532) so as to cause movement of the robotic work tool along the guiding wire. The controller is configured to determine a measure indicative of a distance between the robotic work tool and the guiding wire, and adjust at least one parameter of the feedback control loop in response to the determined distance measure.
Abstract:
An autonomous coverage robot system includes an active boundary responder comprising a wire powered with a modulated current placed along a perimeter of a property, at least one passive boundary responder placed on a property interior circumscribed by the active boundary responder, and an autonomous coverage robot. The robot includes a drive system carried by a body and configured to maneuver the robot across the property interior. The robot includes a signal emitter emitting a signal, where the passive boundary responder is responsive to the signal and a boundary responder detection system carried by the body. The boundary responder detector is configured to redirect the robot both in response to the responder detection system detecting an active boundary responder and in response to detecting a passive boundary responder.
Abstract:
A robot cleaner includes a traveling unit to move a main body, an obstacle sensing unit to sense an obstacle, a light reception unit to receive modulated light according to a control command of a user, and a controller to control the traveling unit so that the main body traces a light spot formed by the light. If an obstacle is detected, the controller controls the traveling unit such that the main body traces an outline of the obstacle according to the light spot position and the obstacle position.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A robot cleaner and a method for controlling the same are disclosed. The robot cleaner includes: a main body; one or more infrared ray (IR) sensors configured to receive IR signals from a transmission device in various directions; a drive motor configured to move the main body toward the transmission device upon receiving a control signal from a controller; and a controller configured to remove reflected waves from among the plurality of IR signals by generating a transmission device direction estimation value, and control driving of the main body using the drive motor on the basis of the transmission device direction estimation value.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
A robot cleaner system may include a robot cleaner that may be automatically driven while performing a cleaning operation, a recharging base that receives the robot cleaner, and a remote control device that remotely controls the robot cleaner. The remote control device may also generate mapping information between an actual region and a virtual region based on image information generated by a camera provided on the robot cleaner, and/or image information generated by a camera on the recharging base.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
Abstract:
A robot cleaner includes a main body that defines an external appearance of the robot cleaner. The robot cleaner further includes a plurality of dust sensors that are located at different positions on the main body and that are configured to sense dust that is located in a traveling route of the robot cleaner. The robot cleaner further includes a control unit that is configured to control movement and a cleaning operation of the robot cleaner based on sensing data from the plurality of dust sensors.
Abstract:
A positioning system comprises a sweeper and a positioning device arranged on a ceiling. The sweeper has a lighting component for emitting light. The positioning device at least has a height measuring unit and a plurality of light-sensitive units. The positioning device measures a vertical distance between the positioning device and a floor through the height measuring unit. The positioning device receives the light emitted from the emitting light of the sweeper through the light-sensitive units, and calculates an oblique distance between the positioning device and the sweeper based on different strengths of the light respectively received from each of the plurality of light-sensitive units. Therefore, the positioning device can calculates a parallel distance between the positioning device and the sweeper based on the vertical distance and the oblique distance, and further determines a related position of the sweeper opposite to the positioning device.