Abstract:
A power supply device connects a plurality of battery modules (10) including a plurality of battery cells (1) by power line (42). Battery module (10) includes cell monitor circuit (6) that detects battery information, and a plurality of cell monitor circuits (6) provided in each battery module (10) are cascade-connected via communication line (44). Cell monitor circuit (6) includes communication interface (48) including connection parts (43) formed by connecting communication line (44), and communication interface (48) sets a withstand voltage applied to connection part (43) to be higher than an output voltage of the power supply device.
Abstract:
A storage maintains charge times for vehicles. A processor of a server is programmed to periodically determine a time interval since each of the vehicles has been started according to the charge times. The server sends a message over a wide-area network requesting remote start of one of the vehicles responsive to the time interval for the one of the vehicles indicating no engine restart for at least a predefined time period. A processor of a vehicle restarts the vehicle according to receipt of a restart request sent responsive to a periodic process performed by a remote server to identify that a most recent vehicle start time sent from the vehicle to the remote server is at least a predefined time interval from a current time identified by the remote server.
Abstract:
A heterogeneous electrical energy storage system (HESS) is managed by determining a power demand of a dynamic electrical power load in a system having multiple rechargeable energy storage components, each of the energy storage components having a respective capacity, energy delivery rate, energy density, specific energy, and cycle characteristic. In response to determining the power demand of the electrical power load, one or more of the energy storage components are discharged to supply power to the electrical power load in accordance with at least one of: a respective remaining capacity measured for at least some of the energy storage components, and the power demand of the electrical power load relative to one or more respective rate limits currently applied to the energy storage components.
Abstract:
Vehicle battery management systems (BMS) and methods are described, in which the output of a vehicle battery is reduced by activating a shutdown mode. A BMS may be configured to start a timer when the vehicle is turned off, e.g. based on when the main power between the vehicle and the battery is interrupted or based on a signal from the vehicle control system. The BMS may further be configured to store BMS data (e.g. variable data related to operation and/or status of the battery) to an electronic storage device, and to switch the battery to a shutdown mode, when the timer reaches a predetermined value. The BMS may be further configured to load the BMS data from the electronic storage device and/or to deactivate the shutdown mode when the vehicle is turned back on.
Abstract:
A method for managing the charge state of a battery includes activating a float-charge phase of the battery, in which the battery is intermittently charged with a view to maintaining the charge state thereof above a predetermined target charge-state value. The method also includes detecting critical conditions of use of the battery likely to prevent the battery charge state from being maintained above the predetermined target charge-state value and increasing the predetermined target charge-state value when the critical conditions of use of the battery are detected, such as to anticipate activating the battery float-charge phase.
Abstract:
The invention pertains to a method of determining the State of Health (SoH) and/or State of Charge (SoC) of a rechargeable battery during use of said battery, the method comprising the steps of: generating a first excitation signal within a first selected frequency range, generating a second excitation signal within a second selected frequency range, applying said first and second excitation signals on said rechargeable battery, measuring the response signal for each of said two excitation signals, and then calculate the Electrochemical Impedance (EI) as the ratio between the excitation signals and respective response signals, and then determine the SoH and/or SoC of the rechargeable battery by comparing the calculated EI to a circuit model for the battery and/or determining the SoH and/or SoC of the rechargeable battery by directly evaluating characteristics of the EI. The invention also pertains to a battery management system configured for executing the steps of the method according to the invention.
Abstract:
A system for determining current and potential ranges of a vehicle includes a sensor that is used to detect energy data corresponding to an amount of energy remaining in the vehicle, such as fuel in a gasoline engine or fuel cell or a state of charge (SOC) of a battery. The system also includes a processor that can determine a current range of the vehicle in at least one direction based on a current status of the vehicle and the remaining energy levels. The processor can also determine a potential range of the vehicle that can be achieved if at least one user-controllable factor is changed from the current status of the vehicle. The system also includes an output device for outputting the current range of the vehicle and the potential range of the vehicle. The system may show fuel and/or recharging stations within the current and potential ranges.
Abstract:
Systems of an electric vehicle and the operations thereof are provided. Methods are provided that determine whether a vehicle power source is authorized to power a vehicle at a specific level, and if the power source is not authorized to power the vehicle, alter an ability of the power source.
Abstract:
Battery system with overcharge and/or exhaustive-discharge protection, having a rapid-discharge unit for electrically discharging an electrical energy store having a first connection which is electrically connected to a first pole, characterized in that the battery system comprises a tripping unit having an electrically conductive mechanical component for tripping the rapid-discharge unit, wherein the mechanical component is electrically connected directly to a second pole by an electrically conductive housing of the electrical energy store and/or by an electrical connection.
Abstract:
System for managing the charge on an electrical storage battery so as to extend its useful life between charges, and providing enhanced safety features.