Abstract:
Systems, apparatus and methods for seamless metal back cover for combined wireless power transfer, cellular, WiFi, and GPS communications are provided. In one aspect, an apparatus for wirelessly coupling with other devices comprises a metallic cover comprising a first metallic portion separated by a first non-conductive portion from a second metallic portion of the metallic portion to define a first slot. The apparatus further comprises a conductor comprising a first end portion electrically coupled to the metallic cover at the first metallic portion and a second end portion crossing the first end portion and electrically coupled to the metallic cover at the second metallic portion. The metallic cover and the conductor form a coupler configured to wirelessly receive power sufficient to charge or power a load of the apparatus from a wireless power transmitter.
Abstract:
Systems, methods and apparatus are disclosed for a dual mode wireless power receiver. In accordance with on aspect, an apparatus for receiving wireless power is provided. The apparatus includes a first coil configured to wirelessly receive power from a first transmitter configured to generate a first alternating magnetic field having a first frequency. The apparatus further includes a second coil configured to wirelessly receive power from a second transmitter configured to generate a second alternating magnetic field having a second frequency higher than the first frequency. The second coil is positioned to enclose the first coil. A first coupling factor between the first coil and a coil of the first transmitter is higher than a second coupling factor between the second coil and a coil of the second transmitter when the first and second coils are positioned within respective charging regions of the first and second transmitters.
Abstract:
An antenna module is described. The antenna module include a ground plane in a multilayer substrate. The antenna module also includes a mold on the multilayer substrate. The antenna module further includes a conductive wall separating a first portion of the mold from a second portion of the mold. The conductive wall is electrically coupled to the ground plane. A conformal shield may be placed on a surface of the second portion of the mold. The conformal shield is electrically coupled to the ground plane.
Abstract:
Certain aspects of the present disclosure provide a glass ceramic antenna package having a large bandwidth (e.g., 19 GHz) for millimeter wave (mmWave) applications, for example. The antenna package generally includes an antenna element comprising a first substrate layer and a second substrate layer, wherein the first substrate layer comprises an antenna, wherein the second substrate layer comprises shielding elements and feed lines, and wherein the feed lines are electrically coupled to the antenna. The antenna package also includes a lead frame adjacent to one or more lateral surfaces of the antenna element.
Abstract:
A multi-layer laminate antenna includes: a feed line configured to convey electricity; a radiator coupled to the feed line, comprising metal disposed in a first layer of the antenna, and having an edge of a length to radiate energy at a radiating frequency; and dummy metal disposed in a second layer of the antenna that is different from the first layer of the antenna; where a first portion of the dummy metal is configured such that any linear edge of the first portion of the dummy metal disposed outside an area of the second layer overlapped by the radiator is less than half of a radiating wavelength corresponding to the radiating frequency.
Abstract:
Certain aspects of the present disclosure are generally directed to apparatus and techniques for wireless charging. One example apparatus generally includes a plurality of inductive elements and signal generation circuitry coupled to the plurality of inductive elements and configured to generate a plurality of signals, where at least two signals of the plurality of signals have different magnitudes. In certain aspects, the signal generation circuitry is configured to drive the plurality of inductive elements using the plurality of signals, where at least one first inductive element of the plurality of inductive elements is driven using at least one first signal of the plurality of signals having a first phase and at least one second inductive element of the plurality of inductive elements is driven using at least one second signal of the plurality of signals having a second phase different from the first phase.
Abstract:
Methods, systems, and devices for wireless communications are described. An antenna structure for wideband coverage may include a first bowtie antenna disposed in a first plane. The first bowtie antenna may be, for example, an elliptical bowtie antenna or a triangular bowtie antenna. The antenna structure may also include a plurality of additional bowtie antennas, each of the plurality of additional bowtie antennas disposed in a different plane parallel to the first plane. The first bowtie antenna and the plurality of additional bowtie antennas may be stacked in a first direction perpendicular to the first plane to form a bowtie antenna stack. The antenna structure may include a plurality of bowtie antenna stacks. The antenna structure may also include a staggered conductive wall.
Abstract:
The present disclosure pertains to wireless chargers. In one embodiment, a 2×2 array of conductive coils produces magnetic fields. Adjacent coils receive current having different directions to cancel magnetic fields around a periphery of the array. A wireless charging platform may include at least four such coils. Regions between and above the coils may include magnetic fields approximately parallel to the surface of the platform so that electronic devices may be charged while standing up during operation by a user with reduced exposure to magnetic radiation. An electronic device may also be placed flat on each coil for charging.
Abstract:
Disclosed is a wireless power transfer apparatus that includes a case for an electronic device. The case may have an electrically conductive panel portion and side portions defined along sides of the panel portion. The case further have at least one opening formed one of the side portions. A coil configured to couple to an externally generated magnetic field may have first segments that span a width of the panel portion of the case and second segments arranged along the side portions of the case and exposed through the at least one opening.
Abstract:
An aspect of this disclosure is an apparatus for transmitting power wirelessly. The apparatus comprises a detection circuit and a processor. The apparatus also includes a power amplifier driving an antenna circuit of flexible antenna(s) configured for wireless power transfer. The processor determines that at least one measured variable of the power amplifier falls outside of a corresponding threshold range, indicative of a deformation of a physical shape of one of the flexible antennas or indicative of misalignment of the flexible antennas from a power receiver. The processor further commands the power amplifier to transition to a first power mode from a second power mode based on the determination that at least one of the measured variables falls outside of the corresponding threshold range. The antenna circuit in the first power mode transmits power at a power level less than the power level in the second power mode.