Abstract:
A system for pumping laser sustained plasma and enhancing one or more selected wavelengths of output illumination generated by the laser sustained plasma is disclosed. In embodiments, the system includes one or more pump modules configured to generate pump illumination for the laser sustained plasma and one or more enhancing illumination sources configured to generate enhancing illumination at one or more selected wavelengths. The pump illumination may be directed along one or more pump illumination paths that are non-collinear to an output illumination path of the output illumination. The enhancing illumination may be directed along an illumination path that is collinear to the output illumination path of the output illumination so that the enhancing illumination is combined with the output illumination, thereby enhancing the output illumination at the one or more selected wavelengths.
Abstract:
An optical system for generating broadband light via light-sustained plasma formation includes a chamber, an illumination source, a set of focusing optics, and a set of collection optics. The chamber is configured to contain a buffer material in a first phase and a plasma-forming material in a second phase. The illumination source generates continuous-wave pump illumination. The set of focusing optics focuses the continuous-wave pump illumination through the buffer material to an interface between the buffer material and the plasma-forming material in order to generate a plasma by excitation of at least the plasma-forming material. The set of collection optics receives broadband radiation emanated from the plasma.
Abstract:
A system for generating high power broadband light includes multiple light-sustained plasma light sources. Each one of the light-sustained sources includes a pumping source, a gas containment structure for containing gas and configured to receive pumping illumination from the pumping source and a parabolic reflector element arranged to collect at least a portion of the broadband radiation emitted by the generated plasma and form a collimated broadband radiation output. The system also including a set of optical elements configured to combine the collimated broadband outputs from the parabolic reflector elements of the multiple light-sustained plasma light sources into an aggregated broadband beam.
Abstract:
A system for separating plasma pumping light and collected broadband light includes a pump source configured to generate pumping illumination including at least a first wavelength, a gas containment element for containing a volume of gas, a collector configured to focus the pumping illumination from the pumping source into the volume of gas to generate a plasma within the volume of gas, wherein the plasma emits broadband radiation including at least a second wavelength and an illumination separation prism element positioned between a reflective surface of the collector and the pump source and arranged to spatially separate the pumping illumination including the first wavelength and the emitted broadband radiation including at least a second wavelength emitted from the plasma.
Abstract:
A system for providing illumination to a measurement head for optical metrology is configured to combine illumination beams from a plurality of illumination sources to deliver illumination at one or more selected wavelengths to the measurement head. The intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. Illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
Abstract:
A system for illuminating a sample with a spectrally filtered illumination source includes an illumination source configured to generate a beam of illumination having a first set of wavelengths. In addition, the system includes a wavelength filtering sub-system, a sample stage, an illumination sub-system, a detector, and an objective to focus illumination from the surface of one or more samples and focus the collected illumination to the detector. Further, the wavelength filtering sub-system includes one or more first dispersive elements positioned to introduce spatial dispersion into the beam, a spatial filter element, and one or more dispersive elements positioned to remove spatial dispersion from the beam. The spatial filter element is further positioned to pass at least a portion of the beam including a second set of wavelengths, wherein the second set of wavelengths is a subset of the first set of wavelengths.
Abstract:
The disclosure is directed to systems for providing illumination to a measurement head for optical metrology. In some embodiments of the disclosure, illumination beams from a plurality of illumination sources are combined to deliver illumination at one or more selected wavelengths to the measurement head. In some embodiments of the disclosure, intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. In some embodiments of the disclosure, illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
Abstract:
A plasma cell for forming light-sustained plasma includes a transmission element configured to contain a volume of gas, a first terminal flange disposed at or near an opening of the transmission element, a second terminal flange disposed at or near another opening of the transmission element, a floating flange disposed between the first or second terminal flange and the transmission element. The floating flange is movable to compensate for thermal expansion of the transmission element. Further, the floating flange is configured to enclose the internal volume of the transmission element to contain a volume of gas within the transmission element. The transmission element is configured to receive illumination from an illumination source in order to generate plasma within the volume of gas. The transmission element is transparent to a portion of the illumination from the illumination source and a portion of broadband radiation emitted by the plasma.
Abstract:
A system for controlling convective flow in a light-sustained plasma includes an illumination source configured to generate illumination, a plasma cell including a bulb for containing a volume of gas, a collector element arranged to focus illumination from the illumination source into the volume of gas in order to generate a plasma within the volume of gas contained within the bulb. Further, the plasma cell is disposed within a concave region of the collector element, where the collector element includes an opening for propagating a portion of a plume of the plasma to a region external to the concave region of the collect element.
Abstract:
A laser sustained plasma light source includes a plasma bulb containing a working gas flow driven by an electric current sustained within the plasma bulb. Charged particles are introduced into the working gas of the plasma bulb. An arrangement of electrodes maintained at different voltage levels drive the charged particles through the working gas. The movement of the charged particles within the working gas causes the working gas to flow in the direction of movement of the charged particles by entrainment. The resulting working gas flow increases convection around the plasma and increases laser to plasma interaction. The working gas flow within the plasma bulb can be stabilized and controlled by control of the voltages present on the each of the electrodes. A more stable flow of working gas through the plasma contributes to a more stable plasma shape and position within the plasma bulb.