摘要:
A method is disclosed for driving a phase change memory device including a phase change resistor. The method includes applying a trigger voltage to the phase change resistor for a first write time to preheat the phase change resistor, applying a first write voltage to the phase change resistor for a second write time to control a first state of the phase change resistor, and applying a second voltage to the phase change resistor for a third write time to control a second state of the phase change resistor.
摘要:
A method for efficiently driving a phase change memory device is presented that includes the operational procedures of writing, reading, comparing and changing. The phase change memory device has a resistor configured to sense a crystallization state changed by currents so as to store data corresponding to the crystallization state. The writing operation writes data having a first state in a corresponding unit cell of the phase change memory device. The reading operation reads a cell data stored in the unit cell. The comparing operation compares the data having the first state with the cell data read from the unit cell to verify whether or not the data having the first state is the same as the cell data. The changing operation changes a write condition when the data having a first state is different from that of the cell data.
摘要:
A phase change memory (PCM) device, a manufacturing technique of making the PCM device, and a way of operating the PCM device is presented. The PCM device is structured to have a silicon on insulator type substrate that provides an advantage of thermally insulating the active area of the PCM device without the need for an additional insulation layer. The PCM device has a phase change resistor PCR that has one terminal connected to a word line and the other terminal connected in common to the N-terminals of two PN diodes in which the P-terminals are connected in common to the bit line. As a result, a current flowing through the phase change resistor PCR is doubled which results in doubling the cell driving capacity.
摘要:
A semiconductor memory device includes a read/write bit line configured to supply a cell driving voltage. A selecting unit is connected to the read/write bit line and is controlled by a word line. A plurality of cells are connected between the selecting unit and a source line, and the cells are configured to read and write data according to a cell driving voltage. Each switching element of a plurality of switching elements are connected in parallel with a single cell of the plurality of cells, and the plurality of switching elements are controlled selectively by a plurality of bit lines.
摘要:
A RFID tag capable of storing and restoring flag data is described. The RFID tag includes an analog block for generating a driving power using a radio frequency signal received through an antenna. The driving power is used to store the flag data. A digital block is operated using the generated driving power and processes RF data that is transmitted and received via the analog block in order to store the flag data in the analog block. A memory block reads and writes data to a nonvolatile ferroelectric capacitor depending on a control signal from the digital block. The analog block supplies the flag data to the digital block during an activation time period of a power-on reset signal.
摘要:
A radio frequency identification (RFID) device and a test method thereof are disclosed. In this test method, the RFID device receives different kinds of tag selection addresses and memory addresses according to a time sharing scheme, so that one or more RFID tags are tested. The RFID device includes a tag chip and a test chip. The tag chip performs a test operation upon receiving a test input signal from an external node, and externally outputs a test output signal indicating a result of the test operation. The test chip tests the tag chip upon receiving an address and data from an external node via a test pad during a test mode.
摘要:
A semiconductor memory device comprises a one-transistor (1-T) field effect transistor (FET) type ferroelectric device connected between a pair of bit lines and controlled by a word line, where a different channel resistance is induced to a channel region depending on a polarity state of a ferroelectric layer; a plurality of access transistors connected between the ferroelectric device and the pair of bit lines; and a plurality of port word lines configured to select the plurality of access transistors.
摘要:
A 1-transistor type DRAM driving process writes a data bit that corresponds to a level applied to a bit line. A first hold period holds data by deactivating a word line of an NMOS transistor and precharging a source and bit line. After the first hold period, a complex operation period operates the NMOS transistor and a bipolar transistor by activating the word line of the NMOS transistor, shifting the source line voltage to a ground voltage, and shifting the bit line voltage to a corresponding multi level bit voltage level. After the complex operation period, a bipolar transistor operation period operates only the bipolar transistor by deactivating the word line of the NMOS transistor. After the bipolar transistor operation period, a second hold period holds the data by precharging the source and bit lines of the NMOS transistor and the bit level applied to the bit line is written.
摘要:
A phase change memory device includes a cell array unit having a phase change resistance cell positioned at an intersection of a word line and a bit line. A write driving unit is configured to generate a single write voltage to the cell array unit when data to be written is a first data and is configured to generate a plurality of write voltages selectively when the data is a second data.
摘要:
A phase change memory device having an improved performance that minimizes cell degradation is presented. The phase change memory device includes: a cell array, a sense amplifier, a write driving unit, and a reference level selecting unit. The cell array has a phase change resistor is configured to read/write data. The sense amplifier is configured to compare a reference voltage with a sensing voltage received from the cell array. The write driving unit is configured to supply a driving voltage corresponding to write data to the cell array. The reference level selecting unit is configured to select a read reference voltage in a read mode so as to output the reference voltage, and to select a reference voltage corresponding to input data in a write verifying mode so as to output the reference voltage.