Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
An electronic device may have a display. The display may have an active region in which display pixels are used to display images. The display may have one or more openings and may be mounted in a housing associated with the electronic device. An electronic component may be mounted in alignment with the openings in the display. The electronic component may include a camera, a light sensor, a light-based proximity sensor, status indicator lights, a light-based touch sensor array, a secondary display that has display pixels that may be viewed through the openings, antenna structures, a speaker, a microphone, or other acoustic, electromagnetic, or light-based component. One or more openings in the display may form a window through which a user of the device may view an external object. Display pixels in the window region may be used in forming a heads-up display.
Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Heat sinks and other thermally conductive structures may be used to remove excess component heat. Structures may also be provided in an electronic device to detect moisture. Integrated circuits and other circuitry may be mounted on a printed circuit board under a radio-frequency shielding can.
Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
An acoustically permeable material is disposed within an aperture of an electronic device to provide aesthetic appeal for the electronic device and protection for an acoustic device mounted within the electronic device. A stiffener is used in conjunction with the acoustically permeable material to improve its ability to resist permanent mechanical deformation from external forces. In some embodiments the stiffener may have multiple cavities enabling improved isolation between multiple acoustic devices within the same aperture. Other methods of employing acoustically permeable materials are disclosed that improve the aesthetic appeal, acoustic performance and/or manufacturability of the electronic device.
Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
An electronic device may have a printed circuit to which electrical components are mounted. The electrical components may include a thermal sensor and a pressure sensor. A through hole in the printed circuit may receive the shaft of a standoff The standoff may be soldered to plated metal on the sides of the through hole. A screw or other fastener may secure the printed circuit to a housing for the electronic device. A ring-shaped metal member may be soldered to the printed circuit. The ring-shaped metal member may form a bumper that surrounds the screw or other fastener and the thermal sensor. The pressure sensor may have a port through which ambient pressure measurements are made. A dust protection cover such as a fabric or other porous layer may cover the port.
Abstract:
An apparatus comprises a fingerprint sensor having a set of capacitive elements configured for capacitively coupling to a user fingerprint. The fingerprint sensor may be disposed under a control button or display element of an electronic device, for example one or more of a control button and a display component. A responsive element is responsive to proximity of the user fingerprint, for example one or both of a first circuit responsive to motion of the control button, and a second circuit responsive to a coupling between the fingerprint and a surface of the display element. The fingerprint sensor is disposed closer to the fingerprint than the responsive element. The control button or display component may include an anisotropic dielectric material, for example sapphire.
Abstract:
An electronic device may have a hollow display cover structure. The hollow display cover structure may be formed from a structure having an inner surface. The structure may be an elongated member having a longitudinal axis. A material such as sapphire, other crystalline materials, or other transparent materials may be used in forming the hollow display cover structure. A flexible display layer such as an organic light-emitting diode display layer or other flexible display structure may be wrapped around the longitudinal axis to cover the interior surface of the hollow display cover structure. The electronic device may have a touch sensor, accelerometer, gyroscope, and other sensors for gathering input such as user input. The electronic device may use one or more sensors to gather information on rotational motion of the device and can display content on the flexible display layer accordingly.
Abstract:
This application relates primarily to various apparatus and method for securing and protecting a camera module within a device housing. The securing and protecting elements are configured to take up minimal space within the device housing so that available space for the camera module is maximized. In some embodiments the securing elements can also include grounding features.