Abstract:
FIG. 1 is a front perspective view of a display for electronic communication device showing the claimed design; FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a left side view thereof; FIG. 5 is a right side view thereof; FIG. 6 is a bottom view thereof; and, FIG. 7 is a top view thereof. The broken lines in the figures show portions of the display for electronic communication device that form no part of the claimed design. The oblique shade lines in the figures show transparency or translucency.
Abstract:
Coatings for filling cracks within anodic films formed from, for example, a laser marking process are described. The cracks generally have widths of nanometers in scale and can extend from an external surface of an anodic film to an underlying metal substrate. The coatings fill the cracks to prevent liquid and contaminants from entering the cracks and reaching the metal substrate, thereby preventing corrosion of the underlying metal substrate. The coatings can be hydrophobic such that water is wicked away from the cracks. In some cases, the coatings are fluoropolymer coatings. Methods include spray-on techniques that provide a thin and uniform layer of the coating. The spray-on technique can be configured to spray on a fluoropolymer precursor onto the anodic film such that the fluoropolymer precursor diffuses into and polymerizes into the fluoropolymer coating within the cracks.
Abstract:
An electronic device having a securing member for a camera module is disclosed. The securing member may include several flexible spring elements extending around the camera module to maintain the position of the camera module during an assembly process of the electronic device. The securing member and the housing may be made from an electrically conductive material or materials. In this manner, the securing member may further provide the camera module with an electrical ground to prevent excessive electric charge within the camera module. In some embodiments, an alignment member is positioned on the housing and aligns the camera module and/or securing member with an aperture of the housing.
Abstract:
This application relates to various button related embodiments for use with a portable electronic device. In some embodiments, a snap clip can be integrated with a button bracket to save space where two separate brackets would take up too much space in the portable electronic device. In other embodiments, a tactile switch can be waterproofed by welding a polymeric layer atop a tactile switch assembly. In this way water can be prevented from contacting moisture sensitive components of the tactile switch assembly. The weld joining the polymeric layer to the tactile switch can include at least one gap to trapped gas surrounding the tactile switch assembly to enter and exit during heat excursions caused by various operating and/or assembly operations.
Abstract:
An electrical component may be mounted on a substrate such as a ceramic substrate. Contacts may be formed on upper and lower surfaces of the substrate. The electrical component may be soldered to the contacts on the upper surface. The contacts on the lower surface may be used to solder the substrate to a printed circuit. During manufacturing, it may be desirable to use metal traces on a ceramic panel to make connections to contacts on the substrate. Following singulation of the ceramic panel to form the ceramic substrate, some of the metal traces may run to the edge of the ceramic substrate. A folded tab of the printed circuit may form a shield that covers these exposed traces. A divided metal-coated groove or a row of divided metal-coated vias running along each edge of the substrate may also provide shielding.
Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
This application relates to various button related embodiments for use with a portable electronic device. In some embodiments, a snap clip can be integrated with a button bracket to save space where two separate brackets would take up too much space in the portable electronic device. In other embodiments, a tactile switch can be waterproofed by welding a polymeric layer atop a tactile switch assembly. In this way water can be prevented from contacting moisture sensitive components of the tactile switch assembly. The weld joining the polymeric layer to the tactile switch can include at least one gap to trapped gas surrounding the tactile switch assembly to enter and exit during heat excursions caused by various operating and/or assembly operations.
Abstract:
An electronic device that includes a deformable feature designed to seal two or more parts of the electronic device is disclosed. The deformable feature may be designed to deform, in response to a force applied to the deformable feature, with little or no compression. The deformable feature may include a cavity or relief volume extending along the deformable feature to define a space or void in the deformable feature. In response to a force, the deformable feature may deform such that a material (or materials) defining the deformable feature occupies or extends into the space or void, or in a location previously occupied by the space or void. The deformable feature may provide a protective seal between two or more parts that prevents ingress of contaminants, such as a liquid.
Abstract:
An electronic device may be provided with an ejectable component assembly having a connector that can receive and retain a removable module within a housing of the electronic device. The ejectable component assembly may also be provided with an ejector mechanism for at least partially ejecting the removable module from the connector. The ejector mechanism may receive a user input force at an ejector user interface, translate that user input force into an ejection force, and apply that ejection force onto the removable module for ejecting the module. The ejector user interface may be provided at any suitable position of the housing that may not interfere with other functions of the device. The path along which the ejector mechanism translates the user input force into the ejection force between the ejector user interface and the removable module may be provided in any suitable way throughout the device.