Abstract:
A driver circuit includes a plurality of output circuits coupled in parallel between a differential input and a differential output and having a first common node and a second common node. Each of the plurality of output circuits includes a series combination of a pair of inverters and a pair of resistors, coupled between the differential input and the differential output; first source terminals of the pair of inverters coupled to the first common node; and second source terminals of the pair of inverters coupled to the second common node. The driver circuit further includes a first voltage regulator having an output coupled to the first common node of the plurality of output circuits; a second voltage regulator having an output coupled to the second common node of the plurality of circuits; and a current compensation circuit coupled between the outputs of the first voltage regulator and the second voltage regulator.
Abstract:
A receiver relates generally to channel adaptation. In this receiver, a first signal processing block is coupled to a communications channel. The first signal processing block includes: an AGC block and a CTLE block for receiving a modulated signal for providing an analog signal; an ADC for converting the analog signal to digital samples; and an FFE block for equalizing the digital samples to provide equalized samples. A second signal processing block includes: a DFE block for receiving the equalized sampled for providing re-equalized samples; and a slicer coupled to the DFE block for slicing the re-equalized samples. A receiver adaptation block is coupled to the first signal processing block and the second signal processing block. The receiver adaptation block is configured for providing an AGC adaptation, a CTLE adaptation, and a slicer adaptation to the communications channel.
Abstract:
In a receiver, a decision feedback equalizer (“DFE”) receives an analog input signal. The DFE includes a subtraction block for subtracting weighted postcursor decisions from an analog input signal to provide an analog output signal. A postcursor decision block coupled to the DFE compares the analog output signal against positive and negative values of a postcursor coefficient to provide first and second possible decisions for selecting a current postcursor-based decision therebetween responsive to a previous postcursor-based decision. A precursor cancellation block receives the analog output signal, the previous postcursor-based decision and the current postcursor-based decision for providing a digital output signal for a previous sample of the analog input signal.
Abstract:
Clock data recovery can be accomplished using a phase path circuit that is configured to receive a data signal and a clock signal. A phase detection circuit detects phase differences between the data signal and a plurality of clock signals and generates a phase adjustment signal based upon a majority voting of the detected phase differences. Speculative calculation circuits generate speculative phase selection signals. Selection circuits select, in response to the phase adjustment signal, from speculative phase selection signals to provide outputs of the phase path circuit.
Abstract:
In an example, a clock data recovery (CDR) circuit for a receiver includes a timing error detector circuit, a loop filter, and a phase interpolator. The timing error detector circuit is coupled to receive, at a baud-rate, data samples and error samples for symbols received by the receiver. The timing error detector circuit is operable to generate both a timing error value and an estimated waveform value per symbol based on the data samples and the error samples. The loop filter is coupled to the timing error detector to receive timing error values. The phase interpolator is coupled to the loop filter to receive filtered timing error values, the phase interpolator operable to generate a control signal to adjust a sampling phase used to generate the data samples and the error samples.
Abstract:
A method relates generally to a receiver. In such a method, a check of a clock and data recovery block of the receiver for a metastable state is performed. A phase input to a phase interpolator of the receiver is changed to cause the clock and data recovery block of the receiver to exit the metastable state within a time limit. To check for the metastable state, a phase difference in received data is determined, and the phase difference is determined to be less than a threshold for the clock and data recovery block being in the metastable state.